Answer:
Firstly, from the diagram we are given that the length of XB is congruent to BZ, and YC is congruent to CZ. Based on this information, we know that B is the midpoint of XZ, and C is the midpoint of YZ. This means that BC connects the midpoints of segments XZ and YZ. Now that we know this, we can use the Triangle Midsegment Theorem to calculate the length of BC. This theorem states that if a segment connects the midpoints of two sides of a triangle, then the segment is equal to one-half the length of the third side. In this scenario, the third side would be XY, which has a length of 12 units. Therefore, the length of BC = 1/2(XY), and we can substitute the value of XY and solve this equation:
BC = 1/2(XY)
BC = 1/2(12)
BC = 6
Step-by-step explanation:
Please support my answer.
Answer:
x = 5.6 or you can write like this: x = 5 3/5
Step-by-step explanation:
Answer:
- 1.67
Step-by-step explanation:
f(x) =
- 
=
- 
=
- 2
= - 1 
= -1.6666666
= -1.67
The equation of a line of the slope-intersection form is given by:

Where:
m: It's the slope
b: It is the cut-off point with the y axis
If two lines are parallel then their slopes are equal.
We have the following line:

Thus, the slope of the line is -5.
Therefore a parallel line is of the form:

We replace the point 

Finally, the equation is of the form:

Answer:

Answer:
Step-by-step explanation:
-1/4x>8
x>8/(-1/4)
x>(8/1)(-4/1)
x>-32/1
x>-32
x<-32
The answer is D.
--------------------------
-3t+7>=9
-3t>=9-7
-3t>=2
t>=2/-3
t>=-2/3
t<=-2/3
The answer is A.