1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
GalinKa [24]
3 years ago
10

Assessment timer and count Assessment items A rectangle has an area of 102 cm2. The length of the rectangle is 17 cm. What is th

e perimeter of the rectangle?  
Mathematics
1 answer:
Llana [10]3 years ago
4 0
Width  = area / length = 102 / 17  = 6 cm

Perimeter = 2(L + W) = 2(17+6) = 2*23 = 46 cms Answer
You might be interested in
The ages of people on a jury are 41,45,39,56,48,45,42,34,47,62,35, and 58. Make a stem-and-leaf plot of the data.
KATRIN_1 [288]
I drew out one, but I have terrible drawing skills. Hope this gives an idea of how it works

7 0
3 years ago
Read 2 more answers
What is the area of parallegram ABCD
lora16 [44]

Answer:

c

Step-by-step explanation:

if you take the triangle off of the left side and attach it to the left side then you would have a 6 by 4 rectangle that has an area of 24 units squared.

3 0
2 years ago
In the diagram, ∠J ≅ ∠M and JL ≅ MR. What additional information is needed to show ΔJKL ≅ △MNR by SAS?
valentinak56 [21]

Answer:

You will have to find out if JK ≅ MN

Step-by-step explanation:

SAS means you have 2 sides that are congruent that connect to make the one angle congruent.

Due to the fact that JL ≅ MR the sides that are left to make up the angles ∠J and ∠M

8 0
3 years ago
For any triangle ABC note down the sine and cos theorems ( sinA/a= sinB/b etc..)
SCORPION-xisa [38]

Answer:

Step-by-step explanation:

Law of sines is:

(sin A) / a = (sin B) / b = (sin C) / c

Law of cosines is:

c² = a² + b² − 2ab cos C

Note that a, b, and c are interchangeable, so long as the angle in the cosine corresponds to the side on the left of the equation (for example, angle C is opposite of side c).

Also, angles of a triangle add up to 180° or π.

(i) sin(B−C) / sin(B+C)

Since A+B+C = π, B+C = π−A:

sin(B−C) / sin(π−A)

Using angle shift property:

sin(B−C) / sin A

Using angle sum/difference identity:

(sin B cos C − cos B sin C) / sin A

Distribute:

(sin B cos C) / sin A − (cos B sin C) / sin A

From law of sines, sin B / sin A = b / a, and sin C / sin A = c / a.

(b/a) cos C − (c/a) cos B

From law of cosines:

c² = a² + b² − 2ab cos C

(c/a)² = 1 + (b/a)² − 2(b/a) cos C

2(b/a) cos C = 1 + (b/a)² − (c/a)²

(b/a) cos C = ½ + ½ (b/a)² − ½ (c/a)²

Similarly:

b² = a² + c² − 2ac cos B

(b/a)² = 1 + (c/a)² − 2(c/a) cos B

2(c/a) cos B = 1 + (c/a)² − (b/a)²

(c/a) cos B = ½ + ½ (c/a)² − ½ (b/a)²

Substituting:

[ ½ + ½ (b/a)² − ½ (c/a)² ] − [ ½ + ½ (c/a)² − ½ (b/a)² ]

½ + ½ (b/a)² − ½ (c/a)² − ½ − ½ (c/a)² + ½ (b/a)²

(b/a)² − (c/a)²

(b² − c²) / a²

(ii) a (cos B + cos C)

a cos B + a cos C

From law of cosines, we know:

b² = a² + c² − 2ac cos B

2ac cos B = a² + c² − b²

a cos B = 1/(2c) (a² + c² − b²)

Similarly:

c² = a² + b² − 2ab cos C

2ab cos C = a² + b² − c²

a cos C = 1/(2b) (a² + b² − c²)

Substituting:

1/(2c) (a² + c² − b²) + 1/(2b) (a² + b² − c²)

Common denominator:

1/(2bc) (a²b + bc² − b³) + 1/(2bc) (a²c + b²c − c³)

1/(2bc) (a²b + bc² − b³ + a²c + b²c − c³)

Rearrange:

1/(2bc) [a²b + a²c + bc² + b²c − (b³ + c³)]

Factor (use sum of cubes):

1/(2bc) [a² (b + c) + bc (b + c) − (b + c)(b² − bc + c²)]

(b + c)/(2bc) [a² + bc − (b² − bc + c²)]

(b + c)/(2bc) (a² + bc − b² + bc − c²)

(b + c)/(2bc) (2bc + a² − b² − c²)

Distribute:

(b + c)/(2bc) (2bc) + (b + c)/(2bc) (a² − b² − c²)

(b + c) + (b + c)/(2bc) (a² − b² − c²)

From law of cosines, we know:

a² = b² + c² − 2bc cos A

2bc cos A = b² + c² − a²

cos A = (b² + c² − a²) / (2bc)

-cos A = (a² − b² − c²) / (2bc)

Substituting:

(b + c) + (b + c)(-cos A)

(b + c)(1 − cos A)

From half angle formula, we can rewrite this as:

2(b + c) sin²(A/2)

(iii) (b + c) cos A + (a + c) cos B + (a + b) cos C

From law of cosines, we know:

cos A = (b² + c² − a²) / (2bc)

cos B = (a² + c² − b²) / (2ac)

cos C = (a² + b² − c²) / (2ab)

Substituting:

(b + c) (b² + c² − a²) / (2bc) + (a + c) (a² + c² − b²) / (2ac) + (a + b) (a² + b² − c²) / (2ab)

Common denominator:

(ab + ac) (b² + c² − a²) / (2abc) + (ab + bc) (a² + c² − b²) / (2abc) + (ac + bc) (a² + b² − c²) / (2abc)

[(ab + ac) (b² + c² − a²) + (ab + bc) (a² + c² − b²) + (ac + bc) (a² + b² − c²)] / (2abc)

We have to distribute, which is messy.  To keep things neat, let's do this one at a time.  First, let's look at the a² terms.

-a² (ab + ac) + a² (ab + bc) + a² (ac + bc)

a² (-ab − ac + ab + bc + ac + bc)

2a²bc

Repeating for the b² terms:

b² (ab + ac) − b² (ab + bc) + b² (ac + bc)

b² (ab + ac − ab − bc + ac + bc)

2ab²c

And the c² terms:

c² (ab + ac) + c² (ab + bc) − c² (ac + bc)

c² (ab + ac + ab + bc − ac − bc)

2abc²

Substituting:

(2a²bc + 2ab²c + 2abc²) / (2abc)

2abc (a + b + c) / (2abc)

a + b + c

8 0
3 years ago
Simplify the expression 5 + 2 ×[(2+2)×5+5]
Ivan

5 + 2 * [(2 + 2)*5+5] =

5 + 2 * (4 * 5 + 5) =

5 + 2 * 25 =

5 + 50=

55


8 0
3 years ago
Other questions:
  • What is greather 1 mi 2,000 yd
    12·1 answer
  • Another question on Order of operations, what is the value of 28 + 4p? Let p = 11
    10·2 answers
  • to find the amount of space cube shaped bird cage occupies,find the cube of measure of one edge of the bird cage. express the am
    6·1 answer
  • Find the radius of the button. the button: 3.5 inches
    6·1 answer
  • PLS HELP ASAP PLSsss
    9·2 answers
  • Solve the simultaneous equations by substitution<br> 2 + y = 16<br> x = 2y + 1
    5·1 answer
  • Y=x^2-2x-8 <br> please help ‍♀️
    9·2 answers
  • A duck was given $9
    9·2 answers
  • According to a study done by Nick Wilson of Otago University Wellington, the probability a randomly selected individual will not
    12·1 answer
  • Help asap thank you!
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!