Answer:
![\large\boxed{-\bigg[(x-3)^2+2x\bigg]+1}\\\\\boxed{-x^2+4x-8}](https://tex.z-dn.net/?f=%5Clarge%5Cboxed%7B-%5Cbigg%5B%28x-3%29%5E2%2B2x%5Cbigg%5D%2B1%7D%5C%5C%5C%5C%5Cboxed%7B-x%5E2%2B4x-8%7D)
Step-by-step explanation:

![f(x)=(x-3)^2+2x\\\\g(x)=-x+1\\\\g\ \circ\ f\to\text{put f(x) instead of x in the function g(x)}:\\\\(g\ \circ\ f)(x)=-\bigg[\underbrace{(x-3)^2+2x}_{x}\bigg]+1](https://tex.z-dn.net/?f=f%28x%29%3D%28x-3%29%5E2%2B2x%5C%5C%5C%5Cg%28x%29%3D-x%2B1%5C%5C%5C%5Cg%5C%20%5Ccirc%5C%20f%5Cto%5Ctext%7Bput%20f%28x%29%20instead%20of%20x%20in%20the%20function%20g%28x%29%7D%3A%5C%5C%5C%5C%28g%5C%20%5Ccirc%5C%20f%29%28x%29%3D-%5Cbigg%5B%5Cunderbrace%7B%28x-3%29%5E2%2B2x%7D_%7Bx%7D%5Cbigg%5D%2B1)
-----------------------------------------
![-\bigg[(x-3)^2+2x\bigg]+1=-(x-3)^2-2x+1\\\\\text{use}\ (a-b)^2=a^2-2ab+b^2\\\\=-(x^2-(2)(x)(3)+3^2)-2x+1=-(x^2-6x+9)-2x+1\\\\=-x^2-(-6x)-9-2x+1=-x^2+6x-9-2x+1\\\\\text{combine like terms}\\\\=-x^2+(6x-2x)+(-9+1)=-x^2+4x-8](https://tex.z-dn.net/?f=-%5Cbigg%5B%28x-3%29%5E2%2B2x%5Cbigg%5D%2B1%3D-%28x-3%29%5E2-2x%2B1%5C%5C%5C%5C%5Ctext%7Buse%7D%5C%20%28a-b%29%5E2%3Da%5E2-2ab%2Bb%5E2%5C%5C%5C%5C%3D-%28x%5E2-%282%29%28x%29%283%29%2B3%5E2%29-2x%2B1%3D-%28x%5E2-6x%2B9%29-2x%2B1%5C%5C%5C%5C%3D-x%5E2-%28-6x%29-9-2x%2B1%3D-x%5E2%2B6x-9-2x%2B1%5C%5C%5C%5C%5Ctext%7Bcombine%20like%20terms%7D%5C%5C%5C%5C%3D-x%5E2%2B%286x-2x%29%2B%28-9%2B1%29%3D-x%5E2%2B4x-8)
-----------------------------------


Answer:
C
Step-by-step explanation:
The answer would be C because 2/3 as a decimal is 0.6666 and it goes on forever. D is at 0.75 which is too big and a and b are less than 0.5, so C is the correct answer.
Answer:
(x+8)^2 - 60 = 0
Step-by-step explanation:
x^2 + 16x + 4 = 0
x^2 + 16x + 64 - 60 = 0
(x + 8)^2 - 60 = 0
1 / 5^-2
First, let's work out the denominator.
5^ -2 = 1/25. When an exponent is negative, it means to put a 1 over the product. Like we did earlier.
Now we have 1 / (1/25).
1 / (1/25)
Divide 1 by 25.
1 / 0.04
Divide 1 by 0.04
25
The answer is 25!
Now if you make this answer as the Brainliest I will appreciate it very much. And for a limited time answer, and no scam or joke, you will receive your very own flying space ship! No scam at all! Try it. Just press the mark as Brainliest and watch your spaceship land in your backyard! But seriously I will appreciate it if you mark this answer as the Brainliest.