1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nady [450]
3 years ago
12

How do you write 103,727,495 in expanded form?

Mathematics
2 answers:
vaieri [72.5K]3 years ago
7 0
100,000,000
    3,000,000
       700,000
         20,000
           7,000
              400
                 90
                   5
NISA [10]3 years ago
5 0
100,000,000+3,000,000+700,000+20,000+7,000+400+90+5
You might be interested in
<img src="https://tex.z-dn.net/?f=log_%7B8%20x%5E%7B2%7D%20-23x%2B15%7D%282x-2%29%20%5Cleq%200" id="TexFormula1" title="log_{8 x
grandymaker [24]
\log_{8x^2-23x+15} (2x-2) \leq 0

The domain:
The number of which the logarithm is taken must be greater than 0.
2x-2 \ \textgreater \  0 \\&#10;2x\ \textgreater \ 2 \\&#10;x\ \textgreater \ 1 \\ x \in (1, +\infty)

The base of the logarithm must be greater than 0 and not equal to 1.
* greater than 0:
8x^2-23x+15\ \textgreater \ 0 \\ 8x^2-8x-15x+15\ \textgreater \ 0 \\ 8x(x-1)-15(x-1)\ \textgreater \ 0 \\ (8x-15)(x-1)\ \textgreater \ 0 \\ \\ \hbox{the zeros:} \\ 8x-15=0 \ \lor \ x-1=0 \\ 8x=15 \ \lor \ x=1 \\ x=\frac{15}{8} \\ x=1 \frac{7}{8} \\ \\&#10;\hbox{the coefficient of } x^2 \hbox{ is greater than 0 so the parabola op} \hbox{ens upwards} \\&#10;\hbox{the values greater than 0 are between } \pm \infty \hbox{ and the zeros} \\ \\&#10;x \in (-\infty, 1) \cup (1 \frac{7}{8}, +\infty)

*not equal to 1:
8x^2-23x+15 \not= 1 \\&#10;8x^2-23x+14 \not= 0 \\&#10;8x^2-16x-7x+14 \not= 0 \\&#10;8x(x-2)-7(x-2) \not= 0 \\&#10;(8x-7)(x-2) \not= 0 \\&#10;8x-7 \not=0 \ \land \ x-2 \not= 0 \\&#10;8x \not= 7 \ \land \ x \not= 2 \\&#10;x \not= \frac{7}{8} \\ x \notin \{\frac{7}{8}, 2 \}

Sum up all the domain restrictions:
x \in (1, +\infty) \ \land \ x \in (-\infty, 1) \cup (1 \frac{7}{8}, +\infty) \ \land \ x \notin \{ \frac{7}{8}, 2 \} \\ \Downarrow \\&#10;x \in (1 \frac{7}{8}, 2) \cup (2, +\infty)&#10;

The solution:
\log_{8x^2-23x+15} (2x-2) \leq 0 \\ \\&#10;\overline{\hbox{convert 0 to the logarithm to base } 8x^2-23x+15} \\&#10;\Downarrow \\&#10;\underline{(8x^2-23x+15)^0=1 \hbox{ so } 0=\log_{8x^2-23x+15} 1 \ \ \ \ \ \ \ }&#10;\\ \\&#10;\log_{8x^2-23x+15} (2x-2) \leq \log_{8x^2-23x+15} 1

Now if the base of the logarithm is less than 1, then you need to flip the sign when solving the inequality. If it's greater than 1, the sign remains the same.

* if the base is less than 1:
 8x^2-23x+15 \ \textless \  1 \\&#10;8x^2-23x+14 \ \textless \  0 \\ \\&#10;\hbox{the zeros have already been calculated: they are } x=\frac{7}{8} \hbox{ and } x=2 \\&#10;\hbox{the coefficient of } x^2 \hbox{ is greater than 0 so the parabola ope} \hbox{ns upwards} \\&#10;\hbox{the values less than 0 are between the zeros} \\ \\&#10;x \in (\frac{7}{8}, 2) \\ \\&#10;\hbox{including the domain:} \\&#10;x \in (\frac{7}{8}, 2) \ \land \ x \in (1 \frac{7}{8}, 2) \cup (2, +\infty) \\ \Downarrow \\ x \in (1 \frac{7}{8} , 2)

The inequality:
\log_{8x^2-23x+15} (2x-2) \leq \log_{8x^2-23x+15} 1 \ \ \ \ \ \ \ |\hbox{flip the sign} \\ 2x-2 \geq 1 \\ 2x \geq 3 \\ x \geq \frac{3}{2} \\ x \geq 1 \frac{1}{2} \\ x \in [1 \frac{1}{2}, +\infty) \\ \\ \hbox{including the condition that the base is less than 1:} \\ x \in [1 \frac{1}{2}, +\infty) \ \land \x \in (1 \frac{7}{8} , 2) \\ \Downarrow \\ x \in (1 \frac{7}{8}, 2)

* if the base is greater than 1:
8x^2-23x+15 \ \textgreater \ 1 \\ 8x^2-23x+14 \ \textgreater \ 0 \\ \\ \hbox{the zeros have already been calculated: they are } x=\frac{7}{8} \hbox{ and } x=2 \\ \hbox{the coefficient of } x^2 \hbox{ is greater than 0 so the parabola ope} \hbox{ns upwards} \\ \hbox{the values greater than 0 are between } \pm \infty \hbox{ and the zeros}

x \in (-\infty, \frac{7}{8}) \cup (2, +\infty) \\ \\ \hbox{including the domain:} \\ x \in (-\infty, \frac{7}{8}) \cup (2, +\infty) \ \land \ x \in (1 \frac{7}{8}, 2) \cup (2, +\infty) \\ \Downarrow \\ x \in (2, \infty)

The inequality:
\log_{8x^2-23x+15} (2x-2) \leq \log_{8x^2-23x+15} 1 \ \ \ \ \ \ \ |\hbox{the sign remains the same} \\ 2x-2 \leq 1 \\ 2x \leq 3 \\ x \leq \frac{3}{2} \\ x \leq 1 \frac{1}{2} \\ x \in (-\infty, 1 \frac{1}{2}] \\ \\ \hbox{including the condition that the base is greater than 1:} \\ x \in (-\infty, 1 \frac{1}{2}] \ \land \ x \in (2, \infty) \\ \Downarrow \\ x \in \emptyset

Sum up both solutions:
x \in (1 \frac{7}{8}, 2) \ \lor \ x \in \emptyset \\ \Downarrow \\&#10;x \in (1 \frac{7}{8}, 2)

The final answer is:
\boxed{x \in (1 \frac{7}{8}, 2)}
5 0
3 years ago
The answer on this equation I don't know what to do​
Sergeeva-Olga [200]

Answer:

Step-by-step explanation:

3 0
3 years ago
What is a possible equation for a function with an x-intercept of (-5,0) and a y-intercept of (0,3)?
Feliz [49]

Answer:

The equation of a straight line is

-3 x+5 y=15

Step-by-step explanation:

Given x - intercept of (-5,0) and y- intercept is (0,3)

here (-5,0 ) point lie on x- axis and (0,3) this point lie on y- axis

we know that the x- intercept  'a' and y- intercept 'b'  formula is

\frac{x}{a} +\frac{y}{b} = 1

so given x - intercept a =-5 and y- intercept is b= 3

now the straight line equation is \frac{x}{-5} +\frac{y}{3} =1

now simplify \frac{-3 x+5 y}{15} =1

-3 x+5 y=15

5 0
3 years ago
10x-35+3ax=5ax-7a solve for "a" for which the equation is an identity.
ella [17]
You can solve it by using PEMDAS

6 0
4 years ago
Read 2 more answers
Vary the scale factor n from values less than 1 to values greater than 1. How do the points in the resulting images differ from
olya-2409 [2.1K]

Answer: For values of n < 1, all the points on the image move closer to the center of dilation and the logo shrinks. For values of n > 1, all the points on the image move farther from the center of dilation and the logo expands.

Step-by-step explanation: PLATO sample answer. hope it helps :)

5 0
3 years ago
Read 2 more answers
Other questions:
  • You wake up at 6:50 A.M. and spend 30 minutes getting dressed. You have a 20 minute walk to school. What time do you arrive at s
    12·1 answer
  • Find the lateral area of the prism. <br><br> 864 sq. in. <br><br> 576 sq. in. <br><br> 1,728 sq. in.
    9·2 answers
  • Totes need help on my question 3^-34x+5678-(-89÷32-2100035
    6·2 answers
  • The Great Pyramid of Cheops is a square-based pyramid, the base has sides of 230m, and the height is 147m.
    5·1 answer
  • Which coupon should Vivian use to save the most money on a crystal sculpture originally priced at $281.90 20% off or 50.00$
    14·1 answer
  • Please simplify this in radical form
    6·1 answer
  • Multiply 5,5,5,5 4 times which gives me 625
    8·2 answers
  • Which of the following choices lists the values of the side longths of a triangle with 45-45-90 degree angles and a hypotonuso -
    7·2 answers
  • Can someone please help even bubbling in with no work is ok I just don’t understand.
    9·1 answer
  • I need help PLEASE . Number four, what’s the answer and please explain
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!