Are u able to take a picture of the whole question?
Hey there!
Here is your answer:
<u>The proper answer to this question is "18 sections".</u>
Reason:
<u>Divide 6 and 1/3</u>
<u>6×3=18</u>
<u>1×1=1</u>
<u>18/1=18</u>
Therefore it would be divided into 18 different sections.
If you need anymore help feel free to ask me!
Hope this helps!
~Nonportrit
Answer:
last option
Step-by-step explanation:
Sin A: opp/hyp (opposite/hypotenuse)
opposite of A is 24 and the hypotenuse is 30
write that as a fraction: 24/30
simplify and it is: 4/5
Cos A: adj/hyp (adjacent/hypotenuse)
adjacent side of A is 18 and the hypotenuse if 30
write that as a fraction: 18/30
simplify and it is: 3/5
Using Excel formulas
=LARGE(A1:A20, 1)/COUNT (A1:A20)
Count (Ai:An) Function that allows to count the total number of values in a cells range between Ai and An that contain only numbers.
Large (Ai:An, k) Function that allows to find the value of the largest number in a cells range between Ai and An, the number k determine the k-th largest value
Factor x^5 - x to get x(x^4 - 1) = x(x^2-1)(x^2+1) = x(x-1)(x+1)(x^2+1)
We see that x = 0, x = 1 and x = -1 are the real number roots or x intercepts. Ignore the complex or imaginary roots. Unfortunately, the graph shows the x intercepts as -2, 0 and 2 which don't match up.
So there's no way that the given graph matches with f(x) = x^5-x.
-------------------
As more proof, let's consider the end behavior.
As x gets really large toward positive infinity, x^5 will do the same and so will x^5-x. Overall, f(x) will head off to positive infinity. Visually, moving to the right will have the graph move upward forever. This is the complete opposite of what is shown on the graph.
Likewise, the left endpoint should be aimed down instead of up. This is because x^5-x will approach negative infinity as x heads to the left.
In short, the graph shows a "rises to the left, falls to the right" end behavior. It should show a "falls to the left, rises to the right" pattern if we wanted to have a chance at matching it with x^5-x. Keep in mind that matching end behavior isn't enough to get a 100% match; however, having this contradictory end behavior is proof we can rule out a match.
I recommend using Desmos, GeoGebra, or whatever graphing program you prefer to plot out y = x^5-x. You'll get a bettter idea of what's happening.