Yes, this statement is true. Majority of the fluids in our body is water. So, when we perspire, it comes out as a salt solution. When the water vaporizes and turns into water vapor, it leaves white residues in our garments after a while. The salt can't be vaporized as fast as the water so it is left as a solid.
Answer:
Explanation:
stiffness k = 160
m = 10
angular frequency ω = 
= 
= 4
ω = 4
Let x = 4 - A sinωt
when t = 0
x = 4 in
when t = 2 s , x = - 4
- 4 = 4 - A sinωt
8 = A sin 4 x 2
8 = A sin8
A = 8 / sin 8
= 8 / .989
= 8.09 in .
x = 4 - A sinωt
dx / dt = - Aω cosωt
v = - Aω cosωt
for t = 0
v = - Aω
= - 8.09 x 4
= - 32.36 in / s
initial velocity v = - 32.36 in /s
displacement x for t = 4s
x = 4 - 8.09 sin 4 x 4
= 4 - 8.09 sin 16
= 4 - 8.09 x - .2879
= 4 + 2.33
= 6.33 in.
c ) Amplitude of vibration A = 8.09 in .as calculated above .
Answer:
1. Speed=0
2. 2.46 s
3.30.1 m
4. 22.0 m
5.1.004 s
Explanation:
We are given that
Initial speed of blue ball, u=24.1 m/s
Height of blue ball from ground y_0=0.5 m
Initial speed of red ball , u'=7.2 m/s
Height of red from ground=y'0=32 m
Gravity, g=
1.When the ball reaches its maximum height then the speed of the blue ball is zero.
2.v=0

Using the formula and substitute the values

Where g is negative because motion of ball is against gravity


3.
Using the formula


4.Time of flight for red ball=3.77-2.9=0.87s


Hence, the height of red ball 3.77 s after the blue ball is 22.0 m.
5.According to question






Hence, 1.004 s after the blue ball is thrown are the two balls in the air at the same height.
<span>To answer this question, the equation that we will be using is:
y = A cos bx + c
where A = amplitude, b = 2 pi/Period, Period = 12 hrs, c = midline,
x = t and y = f(t)
A = 1/2 (Xmax - Xmin)
12 - 2 / 2 = 10/2 = 5
b = 2 pi / 12 = pi/6
c = 1/2 (Xmax + Xmin)
12+2/2 = 7
answer: f(t) = 5 cos pi/6 t + 7 </span>