1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dmitry [639]
3 years ago
5

Calculate the Schwarzschild radius (in kilometers) for each of the following.1.) A 1 ×108MSun black hole in the center of a quas

ar. Express your answer using two significant figures.2.) A 6 MSun black hole that formed in the supernova of a massive star. Express your answer using two significant figures.3.) A mini-black hole with the mass of the Moon. Express your answer using two significant figures.4.) Estimate the Schwarzschild radius (in kilometers) for a mini-black hole formed when a superadvanced civilization decides to punish you (unfairly) by squeezing you until you become so small that you disappear inside your own event horizon. (Assume that your weight is 50 kg.) Express your answer using one significant figure.
Physics
1 answer:
Westkost [7]3 years ago
8 0

Answer:

(I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

Explanation:

Given that,

Mass of black hole m= 1\times10^{8} M_{sun}

(I). We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Where, G = gravitational constant

M = mass

c = speed of light

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times1\times10^{8}\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=2.94\times10^{8}\ km

(II). Mass of block hole m= 6 M_{sun}

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times6\times1.989\times10^{30}}{(3\times10^{8})^2}

R_{g}=17.7\ km

(III). Mass of block hole m= mass of moon

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times7.35\times10^{22}}{(3\times10^{8})^2}

R_{g}=1.1\times10^{-7}\ km

(IV). Mass = 50 kg

We need to calculate the Schwarzschild radius

Using formula of radius

R_{g}=\dfrac{2MG}{c^2}

Put the value into the formula

R_{g}=\dfrac{2\times6.67\times10^{-11}\times50}{(3\times10^{8})^2}

R_{g}=7.4\times10^{-29}\ km

Hence, (I). The Schwarzschild radius is 2.94\times10^{8}\ km

(II). The Schwarzschild radius is 17.7 km.

(III). The Schwarzschild radius is 1.1\times10^{-7}\ km

(IV). The Schwarzschild radius is 7.4\times10^{-29}\ km

You might be interested in
Which of the following forms matter?<br> A. Proteins<br> B.atoms<br> C.cells<br> D. DNA
Artemon [7]

Answer:b) atoms

Explanation:which are in turn made up of protons, neutrons and electrons

8 0
2 years ago
Read 2 more answers
A gasoline tank has the shape of an inverted right circular cone with base radius 4 meters and height 5 meters. Gasoline is bein
RSB [31]

Answer:

h'=0.25m/s

Explanation:

In order to solve this problem, we need to start by drawing a diagram of the given situation. (See attached image).

So, the problem talks about an inverted circular cone with a given height and radius. The problem also tells us that water is being pumped into the tank at a rate of 8m^{3}/s. As you  may see, the problem is talking about a rate of volume over time. So we need to relate the volume, with the height of the cone with its radius. This relation is found on the volume of a cone formula:

V_{cone}=\frac{1}{3} \pi r^{2}h

notie the volume formula has two unknowns or variables, so we need to relate the radius with the height with an equation we can use to rewrite our volume formula in terms of either the radius or the height. Since in this case the problem wants us to find the rate of change over time of the height of the gasoline tank, we will need to rewrite our formula in terms of the height h.

If we take a look at a cross section of the cone, we can see that we can use similar triangles to find the equation we are looking for. When using similar triangles we get:

\frac {r}{h}=\frac{4}{5}

When solving for r, we get:

r=\frac{4}{5}h

so we can substitute this into our volume of a cone formula:

V_{cone}=\frac{1}{3} \pi (\frac{4}{5}h)^{2}h

which simplifies to:

V_{cone}=\frac{1}{3} \pi (\frac{16}{25}h^{2})h

V_{cone}=\frac{16}{75} \pi h^{3}

So now we can proceed and find the partial derivative over time of each of the sides of the equation, so we get:

\frac{dV}{dt}= \frac{16}{75} \pi (3)h^{2} \frac{dh}{dt}

Which simplifies to:

\frac{dV}{dt}= \frac{16}{25} \pi h^{2} \frac{dh}{dt}

So now I can solve the equation for dh/dt (the rate of height over time, the velocity at which height is increasing)

So we get:

\frac{dh}{dt}= \frac{(dV/dt)(25)}{16 \pi h^{2}}

Now we can substitute the provided values into our equation. So we get:

\frac{dh}{dt}= \frac{(8m^{3}/s)(25)}{16 \pi (4m)^{2}}

so:

\frac{dh}{dt}=0.25m/s

3 0
2 years ago
Wolves are a keystone species because they are _____. at the top of the food chain are physically the largest animal in the food
enot [183]

Answer:

Wolves are a keystone species because they are so important to the ecosystem that their removal causes a catastrophic disequilibrium.

Explanation:

Wolves are the predators available in the environment but they exist in relatively less number while comparing it with another species of animals. Wolves influence their pray which are influenced by plants. Thus, They are so important to the ecosystem that their removal causes a catastrophic disequilibrium.

4 0
3 years ago
Read 2 more answers
The voltage across the terminals of a generator is 5.7 v when it supplies a current of 0.3 A. It becomes 5.1 V when I=0.9A. Find
snow_tiger [21]

Answer:

  • The emf of the generator is 6V
  • The internal resistance of the generator is 1 Ω

Explanation:

Given;

terminal voltage, V = 5.7 V, when the current, I = 0.3 A

terminal voltage, V = 5.1 V, when the current, I = 0.9 A

The emf of the generator is calculated as;

E = V + Ir

where;

E is the emf of the generator

r is the internal resistance

First case:

E = 5.7   + 0.3r -------- (1)

Second case:

E = 5.1 + 0.9r -------- (2)

Since the emf E, is constant in both equations, we will have the following;

5.1 + 0.9r = 5.7   + 0.3r  

collect similar terms together;

0.9r - 0.3r = 5.7 - 5.1

0.6r = 0.6

r = 0.6/0.6

r = 1 Ω

Now, determine the emf of the generator;

E = V + Ir

E = 5.1 + 0.9x1

E = 5.1 + 0.9

E = 6 V

6 0
2 years ago
While in empty space, an astronaut throws a ball at a velocity of 11 m/s. what will the velocity of the ball be after it has tra
Aliun [14]
In empty space probably means, there is no force on the ball.

(This assumption is not quite correct since there is still the force of gravity between the ball and the astronaut, but this force is very very small and can be neglected.)

Assuming there is no force on the ball, Newtown's 1st law says: When viewed in an internal frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
 
This means:
If there is no force on the ball, there will be no acceleration on the ball either.
If the acceleration is zero, the velocity of the ball never changes.
3 0
3 years ago
Other questions:
  • The rate of doing work is called?
    5·2 answers
  • What is the gravitational potential energy of a 150 kg object suspended 5m above the Earth's surface
    13·1 answer
  • Two wheels initially at rest roll the same distance without slipping down identical planes. Wheel B has twice the radius, but th
    8·1 answer
  • Particle of the nucleus that has no electrical charge
    12·2 answers
  • An ice cube of mass 50.0g can slide without friction up and down a 25.0 degree slope. The ice cube is pressed against a spring a
    12·2 answers
  • The frequency of a person's pendulum is 0.3204 Hz when at a location where g is known to be exactly 9.800 m/s^2.
    6·1 answer
  • A tennis ball is dropped from 1.3 m above
    10·1 answer
  • Analysis of the electrocardiogram can be revealed except ________
    15·1 answer
  • How do low energy electromagnetic waves compare with high energy electromagnetic waves? Select all
    6·1 answer
  • Would young rocks be found near a volcano?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!