Answer:
a) P =392.4[Pa]; b) F = 706.32[N]
Explanation:
With the input data of the problem we can calculate the area of the tank base
L = length = 10[m]
W = width = 18[cm] = 0.18[m]
A = W * L = 0.18*10
A = 1.8[m^2]
a)
Pressure can be calculated by knowing the density of the water and the height of the water column within the tank which is equal to h:
P = density * g *h
where:
density = 1000[kg/m^3]
g = gravity = 9.81[m/s^2]
h = heigth = 4[cm] = 0.04[m]
P = 1000*9.81*0.04
P = 392.4[Pa]
The force can be easily calculated knowing the relationship between pressure and force:
P = F/A
F = P*A
F = 392.4*1.8
F = 706.32[N]
Answer:
All forms of energy are either kinetic or potential. The energy associated with motion is called kinetic energy . The energy associated with position is called potential energy . Potential energy is not "stored energy".
Explanation:
Answer:
Potential energy. Releasing it, the potential energy would convert into motion, kinetic energy.
Potential energy is when an object has some sort of potential eg. for motion such as in this example.
<span>Correct Answer: D) 6CO2 + 6H20 → C6H12O6 + 6O2</span>
The reactants are Carbon Dioxide (CO2) and Water (H2O) and the products are Glucose (C6H12O6) and Oxygen gas (O2).
In a balanced chemical equation, the number of atoms of each element are same on both left and right hand side of the equation.
In the given options, option D gives the balanced chemical equation and mentions the reactants and products on correct sides of the equation. So the correct answer is Option D
First , ocean currents are actually big convection currents moving heat around. Second, ocean currents moves food and nutrients from deeper water in a process called upwelling.