Answer:
Step-by-step explanation:
We need to first find the model for this particular situation, knowing that this is an exponential decay problem. The main equation for exponential growth/decay (as far as population goes for our problem) is
where a is the initial population, b is the rate of decrease in the population which can also be written as (1 - r), y is the population after a certain amount of time, x, goes by. We will let year 2015 = 0 so year 2021 can = 6. This keeps our numbers lower and doesn't change the answer!
Our initial population in the year x = 0 is 62500. Our rate of decay is
(1 - .016) so our b value is .984
Filling in to find our model:

Now we can use that model and sub in a 6 for x to find the population in the year 2021:
and
y = 62500(.9077590568) so
y = 56734.9 or, rounded to the nearest person, 56735
Answer:
48
Step-by-step explanation:
Domain are the x values
It would be d) -6, -4, -1, 4
<span>1/(4p)(x-h)^2+k=0
</span><span>1/(4p)(x-h)^2 = -k
</span>
<span>k(4p)(x-h)^2+1=0
4kp (x^2 - 2xh + h^2) + 1 = 0
4kp x^2 - 8kph x + 4kph^2+1 = 0
D = (-8kph)^2 - 4(4kp)(4kph^2+1) = 64(kph)^2 - 64(kph)^2 - 16kp
D = -16kp < 0
SO discriminant is always less than 0
</span>
A.statement . They are congruent