1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
creativ13 [48]
3 years ago
12

Find the volume and the lateral area of a frustum of a right circular cone whose radii are 4 and 8 cm, and slant height is 6 cm.

Mathematics
2 answers:
elixir [45]3 years ago
5 0

the complete answers in the attached figure

Part 1) we have

r=4cm\\ R=8 cm\\ L=6cm

Find the height h

h^{2}=L^{2} -(R -r)^{2}\\ h^{2}=6^{2} -(8-4)^{2}\\ h^{2}=36-16\\ h=\sqrt{20} cm

Find the volume

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[8^{2} +4^{2} +8*4]\sqrt{20}\\ \\ V=\frac{1}{3}\pi[112]\sqrt{20}\\ \\ V=524.52 cm^{3}

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(8+4)*6\\ LA=226.19 cm^{2}

the answer Part 1) is

a) the volume is equal to 524.52 cm^{3}

b) The Lateral area is equal to 226.19 cm^{2}

Part 2) we have

r=4ft\\ R=5 ft\\ h=100 ft

Find the slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=100^{2} +(5-4)^{2}\\ L^{2}=10000+1\\ L=\sqrt{10001} ft

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(5+4)*\sqrt{10001}\\ LA=2,827.57 ft^{2}

the answer part 2) is

a) The Lateral area is equal to 2,827.57 ft^{2}

Part 3) we have

V=52\pi ft^{3} \\ h=3ft\\ R=3r

Step 1

Find the values of R and r

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h

substitute R=3r in the formula above

V=\frac{1}{3}\pi[(3r)^{2} +r^{2} +(3r)*r]*3

V=\frac{1}{3}\pi[7r)^{2}]*3

V=[tex] 52\pi

52\pi =\pi [7r^{2} ]\\ r^{2} =\frac{52}{7} \\ \\ r=2.73 ft

R=3*2.73\\ R=8.19 ft

Step 2

Find the slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=3^{2} +(8.19-2.73)^{2}\\ L^{2}=38.81\\ L=6.23 ft

Step 3

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(8.19+2.73)*6.23 LA=213.73 ft^{2}

the answer Part 3) is

a) The lateral area is equal to 213.73 ft^{2}

Part 4) we have

r=15 in\\ R=33 in\\ h=24 in

Find the slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=24^{2} +(33-15)^{2}\\ L^{2}=576+324\\ L=30 in

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(33+15)*30\\ LA=4,523.89 in^{2}

Find the volume

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[33^{2} +15^{2} +33*15]24\\ \\ V=\frac{1}{3}\pi[112]24\\ \\ V=142.83 in^{3}

the answer is

a) The lateral area is equal to 4,523.89 in^{2}

b) the volume is equal to 142.83 in^{3}

Part 5) we have

r=5 cm\\ h=8√3 cm

Step 1

Find the value of (R-r)

tan 60=\sqrt{3}

tan 60=\frac{(R-r)}{8\sqrt{3}} \\\\ R-r= \sqrt{3} *8\sqrt{3} \\ R-r=24 cm\\ R=24+r\\ R=24+5\\ R=29 cm

Step 2

Find the value of slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=(8\sqrt{3})^{2}+(24-5)^{2}\\ L^{2}=192+361\\ L=23.52 cm

Step 3

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(24+5)*23.52\\ LA=2,142.82 cm^{2}

Step 4

Find the total area

total area=lateral area+area of the top+area of the bottom

Area of the top

r=5 cm\\ A=\pi *r^{2} \\ A=\pi *25\\ A=78.54 cm^{2}

Area of the bottom

r=24 cm\\ A=\pi *r^{2} \\ A=\pi *576\\ A=1,809.56 cm^{2}

Total surface area

SA=2,142.82+78.54+1,809.56\\ SA=4,030.92 cm^{2}

the answer is

a) The total surface area is 4,030.92 cm^{2}

Part 6)

Part a) Find the volume of the water tank

we have

r=4 ft\\ R=6 ft\\ h=8 ft

Step 1

Find the volume

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[6^{2} +4^{2} +6*4]8\\ \\ V=\frac{1}{3}\pi[76]8\\ \\ V=636.70 ft^{3}

the answer Part a) is 636.70 ft^{3}

Part b) Find the volume of the wetted part of the tank if the depth of the water is 5 ft

by proportion find the radius R of the upper side for h=5 ft

\frac{(R1-r)}{8} =\frac{(R2-r)}{5} \\\\ \frac{(6-4)}{8} =\frac{(R2-4)}{5}\\ \\(R2-4)= 1.25\\ R2=4+1.25\\ R2=5.25 ft

Find the volume for R2=5.25 ft

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[5.25^{2} +4^{2} +5.25*4]5\\ \\ V=\frac{1}{3}\pi[64.56]5\\ \\ V=338.05 ft^{3}

the answer Part b) is 338.05 ft^{3}

Part 7) we have

SA=435\pi cm^{2} \\ A1=144\pi cm^{2}\\ A2=81\pi cm^{2}

Step 1

Find the value of R and the value of r

A1=\pi *R^{2} \\ 144\pi =\pi *R^{2}\\ R=12 cm

A2=\pi *r^{2} \\ 81\pi =\pi *r^{2}\\ r=9 cm

Step 2

Find the value of lateral area

LA=SA-A1-A2\\ LA=435\pi -144\pi -81\pi \\ LA=210\pi cm^{2}

Step 3

Find the slant height

LA=\pi (R+r)L\\\\ L=\frac{LA}{\pi(R+r)} \\ \\ L=\frac{210\pi}{\pi(12+9)} \\ \\ L=10 cm

Find the altitude of the frustum

h^{2} =L^{2} -(R-r)^{2} \\ h^{2} =10^{2} -(12-9)^{2}\\ h^{2}=91\\ h=9.54 cm

the answer Part a) is

the slant height is 10 cm

the answer Part b) is

the altitude of the frustum is 9.54 cm

Download docx
fredd [130]3 years ago
4 0
<span>Find the volume and the lateral area of a frustum of a right circular cone whose radii are 4 and 8 cm, and slant height is 6 cm.
h= \sqrt{s^2-(R_1-R_2)^2}  \\ = \sqrt{6^2-(4-8)^2}  \\ = \sqrt{36-16}  \\ = \sqrt{20}
Volume= \frac{1}{3}  \pi h(R_1^2+R_1R_2+R_2^2) \\ = \frac{1}{3}  \pi  \times  \sqrt{20} (4^2+4 \times 8+8^2) \\ = \frac{1}{3}  \pi  \sqrt{20} (16+32+64) \\ = \frac{1}{3}  \pi  \sqrt{20} (112) \\ =524.5cm^3
Lateral area = Total surface area - area of base - area of top
Lateral \ area= \pi (R_1+R_2)s \\ = \pi (4+8) \times 6 \\ =12 \pi  \times 6 \\ =72 \pi  \\ =226.2cm^2
</span>
You might be interested in
What is 4 to the 1/2 power
Ronch [10]
4 to he power of 1/2 is 2
I think thats because its 1/2 of 2
Sorry if I'm wrong
Hope this helps
7 0
3 years ago
Given the following table, find the rate of change between f(-1) and f(2). x -1 0 1 2 3 f(x) -2 -1
salantis [7]

Answer:

[f(2) - f(-1)]/3

Step-by-step explanation:

The table is incomplete, so I will answer the question in general terms. The rate of change between f(-1) and f(2) is computed as follows:

rate of change = [f(2) - f(-1)]/[2 - (-1)] = [f(2) - f(-1)]/3

To complete the calculation you need to replace the values of the function at x = 2 and x = -1, and compute the result.

6 0
4 years ago
Read 2 more answers
Round off the following numbers to two decimal places <br> 1.2.1) 0,77677<br> 1.2.2) 34,2784682
andre [41]
1) 0.78
2) 34.28
This is because the number in the 3rd decimal place for both numbers is 5 or above so it is rounded up rather than down.
8 0
3 years ago
Math, please help! Will give brainliest.
natka813 [3]
This one is probably f(x)=2(4)^{x}
8 0
4 years ago
For the pair of similar triangles, find the value of x.
faltersainse [42]

Answer: x=26

Step-by-step explanation:

8 0
3 years ago
Other questions:
  • Help!! Quadratic models! Will mark brainiliest!!
    8·1 answer
  • What is 20.155 rounded to the nearest tenth is
    13·1 answer
  • A worker at a baking company packs rolls twice as fast as he packs muffins. He packs crackers 2.5 times as fast as he packs roll
    8·1 answer
  • Order from least to greatest<br> 14,20,15,10,7,12,14,15,10
    14·2 answers
  • If x = -2, then 2x = -4.
    14·2 answers
  • How does math help with science
    14·2 answers
  • 0.817 times 1.5 must show answer
    7·1 answer
  • Use your knowledge of similar triangles to solve for x
    9·1 answer
  • Can you help me find the value of each shape plz
    8·1 answer
  • Warren owes $1,000 for a new laptop. He pays $100 each week.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!