1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
creativ13 [48]
3 years ago
12

Find the volume and the lateral area of a frustum of a right circular cone whose radii are 4 and 8 cm, and slant height is 6 cm.

Mathematics
2 answers:
elixir [45]3 years ago
5 0

the complete answers in the attached figure

Part 1) we have

r=4cm\\ R=8 cm\\ L=6cm

Find the height h

h^{2}=L^{2} -(R -r)^{2}\\ h^{2}=6^{2} -(8-4)^{2}\\ h^{2}=36-16\\ h=\sqrt{20} cm

Find the volume

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[8^{2} +4^{2} +8*4]\sqrt{20}\\ \\ V=\frac{1}{3}\pi[112]\sqrt{20}\\ \\ V=524.52 cm^{3}

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(8+4)*6\\ LA=226.19 cm^{2}

the answer Part 1) is

a) the volume is equal to 524.52 cm^{3}

b) The Lateral area is equal to 226.19 cm^{2}

Part 2) we have

r=4ft\\ R=5 ft\\ h=100 ft

Find the slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=100^{2} +(5-4)^{2}\\ L^{2}=10000+1\\ L=\sqrt{10001} ft

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(5+4)*\sqrt{10001}\\ LA=2,827.57 ft^{2}

the answer part 2) is

a) The Lateral area is equal to 2,827.57 ft^{2}

Part 3) we have

V=52\pi ft^{3} \\ h=3ft\\ R=3r

Step 1

Find the values of R and r

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h

substitute R=3r in the formula above

V=\frac{1}{3}\pi[(3r)^{2} +r^{2} +(3r)*r]*3

V=\frac{1}{3}\pi[7r)^{2}]*3

V=[tex] 52\pi

52\pi =\pi [7r^{2} ]\\ r^{2} =\frac{52}{7} \\ \\ r=2.73 ft

R=3*2.73\\ R=8.19 ft

Step 2

Find the slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=3^{2} +(8.19-2.73)^{2}\\ L^{2}=38.81\\ L=6.23 ft

Step 3

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(8.19+2.73)*6.23 LA=213.73 ft^{2}

the answer Part 3) is

a) The lateral area is equal to 213.73 ft^{2}

Part 4) we have

r=15 in\\ R=33 in\\ h=24 in

Find the slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=24^{2} +(33-15)^{2}\\ L^{2}=576+324\\ L=30 in

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(33+15)*30\\ LA=4,523.89 in^{2}

Find the volume

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[33^{2} +15^{2} +33*15]24\\ \\ V=\frac{1}{3}\pi[112]24\\ \\ V=142.83 in^{3}

the answer is

a) The lateral area is equal to 4,523.89 in^{2}

b) the volume is equal to 142.83 in^{3}

Part 5) we have

r=5 cm\\ h=8√3 cm

Step 1

Find the value of (R-r)

tan 60=\sqrt{3}

tan 60=\frac{(R-r)}{8\sqrt{3}} \\\\ R-r= \sqrt{3} *8\sqrt{3} \\ R-r=24 cm\\ R=24+r\\ R=24+5\\ R=29 cm

Step 2

Find the value of slant height L

L^{2}=h^{2}+(R -r)^{2}\\ L^{2}=(8\sqrt{3})^{2}+(24-5)^{2}\\ L^{2}=192+361\\ L=23.52 cm

Step 3

Find the lateral area

LA=\pi (R+r)L\\ LA=\pi *(24+5)*23.52\\ LA=2,142.82 cm^{2}

Step 4

Find the total area

total area=lateral area+area of the top+area of the bottom

Area of the top

r=5 cm\\ A=\pi *r^{2} \\ A=\pi *25\\ A=78.54 cm^{2}

Area of the bottom

r=24 cm\\ A=\pi *r^{2} \\ A=\pi *576\\ A=1,809.56 cm^{2}

Total surface area

SA=2,142.82+78.54+1,809.56\\ SA=4,030.92 cm^{2}

the answer is

a) The total surface area is 4,030.92 cm^{2}

Part 6)

Part a) Find the volume of the water tank

we have

r=4 ft\\ R=6 ft\\ h=8 ft

Step 1

Find the volume

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[6^{2} +4^{2} +6*4]8\\ \\ V=\frac{1}{3}\pi[76]8\\ \\ V=636.70 ft^{3}

the answer Part a) is 636.70 ft^{3}

Part b) Find the volume of the wetted part of the tank if the depth of the water is 5 ft

by proportion find the radius R of the upper side for h=5 ft

\frac{(R1-r)}{8} =\frac{(R2-r)}{5} \\\\ \frac{(6-4)}{8} =\frac{(R2-4)}{5}\\ \\(R2-4)= 1.25\\ R2=4+1.25\\ R2=5.25 ft

Find the volume for R2=5.25 ft

V=\frac{1}{3}\pi[R^{2} +r^{2} +Rr]h\\\\ V=\frac{1}{3}\pi[5.25^{2} +4^{2} +5.25*4]5\\ \\ V=\frac{1}{3}\pi[64.56]5\\ \\ V=338.05 ft^{3}

the answer Part b) is 338.05 ft^{3}

Part 7) we have

SA=435\pi cm^{2} \\ A1=144\pi cm^{2}\\ A2=81\pi cm^{2}

Step 1

Find the value of R and the value of r

A1=\pi *R^{2} \\ 144\pi =\pi *R^{2}\\ R=12 cm

A2=\pi *r^{2} \\ 81\pi =\pi *r^{2}\\ r=9 cm

Step 2

Find the value of lateral area

LA=SA-A1-A2\\ LA=435\pi -144\pi -81\pi \\ LA=210\pi cm^{2}

Step 3

Find the slant height

LA=\pi (R+r)L\\\\ L=\frac{LA}{\pi(R+r)} \\ \\ L=\frac{210\pi}{\pi(12+9)} \\ \\ L=10 cm

Find the altitude of the frustum

h^{2} =L^{2} -(R-r)^{2} \\ h^{2} =10^{2} -(12-9)^{2}\\ h^{2}=91\\ h=9.54 cm

the answer Part a) is

the slant height is 10 cm

the answer Part b) is

the altitude of the frustum is 9.54 cm

Download docx
fredd [130]3 years ago
4 0
<span>Find the volume and the lateral area of a frustum of a right circular cone whose radii are 4 and 8 cm, and slant height is 6 cm.
h= \sqrt{s^2-(R_1-R_2)^2}  \\ = \sqrt{6^2-(4-8)^2}  \\ = \sqrt{36-16}  \\ = \sqrt{20}
Volume= \frac{1}{3}  \pi h(R_1^2+R_1R_2+R_2^2) \\ = \frac{1}{3}  \pi  \times  \sqrt{20} (4^2+4 \times 8+8^2) \\ = \frac{1}{3}  \pi  \sqrt{20} (16+32+64) \\ = \frac{1}{3}  \pi  \sqrt{20} (112) \\ =524.5cm^3
Lateral area = Total surface area - area of base - area of top
Lateral \ area= \pi (R_1+R_2)s \\ = \pi (4+8) \times 6 \\ =12 \pi  \times 6 \\ =72 \pi  \\ =226.2cm^2
</span>
You might be interested in
A caterer has 5 rolls. He is ordering more rolls. He can order up to 9 packages of rolls and each package contains 12 rolls. The
stich3 [128]
B is the practical domain of the function

6 0
3 years ago
Given the values in the table on the left come from
schepotkina [342]

–3.2 < x < –2.4

1.6 < x < 2.4

7 0
3 years ago
Will mark Brainliest
Artist 52 [7]

Answer:

I believe its hyperbola

8 0
3 years ago
Read 2 more answers
I need help my grade depends on your answer!!
Fynjy0 [20]

Answer:

Angle 4 and Angle 5 are congruent.

Step-by-step explanation:

5 0
3 years ago
Find the area of a triangle whose two sides are 18cm and 10cm and the perimeter is 42cm
kobusy [5.1K]

Ur answer will be - A≈69.65cm².  

<u><em>Hope this helps!!</em></u>

5 0
3 years ago
Other questions:
  • What is a linear equation ?
    11·1 answer
  • Order of operation pratice solve 12[2+7)-24/12
    8·2 answers
  • Given that the product of 22 integers is equal to 1, prove that their sum is not equal to 0.
    9·2 answers
  • samuel fell asleep after they had travelled 90 miles. if the total length of the trip was 600 miles, what percentage of the tota
    6·1 answer
  • I keep getting this Q wrong can someone help me solve it :)
    10·2 answers
  • 7−s/2&gt;3 Solve for the inequality<br> PLZZZZ help I am struggling with khan academy
    8·1 answer
  • Which ratio is the simplest form of 42 : 28 ?<br> A) 2:1<br> B<br> 21:14<br> 3:2<br> 2<br> D) 2:3
    11·2 answers
  • The ratio of pizza to nachos sold during A-lunch is 4 to 3. There were 48 nachos sold. What is the number of pizzas sold during
    12·1 answer
  • Determine the range of the following graph:
    13·1 answer
  • F the base is 4, what is the value if the exponent is 2? What if the exponent is -2?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!