Based on our conversation above, we can then easily find the missing x-coordinate. If the equation for line BC is y = 6*x - 11 and we know that the y-coordinate is 13, then
13 = 6*x - 11
24 = 6*x
4 = x
The x-coordinate is 4.
        
             
        
        
        
Answer:
(6^4 x 2^-9)
Step-by-step explanation:
 
        
             
        
        
        
Answer:
Step-by-step explanation:
Given: ∠N≅∠S, line l bisects TR at Q.
To prove: ΔNQT≅ΔSQR
Proof: 
From  ΔNQT and ΔSQR 
It is given that:
 ∠N≅∠S (Given)
∠NQT≅∠SQR(Vertical opposite angles)
and TQ≅QR ( Definition of segment bisector)
Thus, by AAS rule, 
 ΔNQT≅ΔSQR 
Hence proved.
Statement                                                 Reason
1. ∠N≅∠S                                                    given
2. ∠NQT≅∠SQR                            Vertical angles are congruent
3.  line l bisects TR at Q.                            given
4. TQ≅QR                                      Definition of segment bisector
5. ΔNQT≅ΔSQR                           AAS theorem
Hence proved.
Thus, option D is correct.
 
        
             
        
        
        
R/2-6=14
r/2=20
r=40
The answer is 40
        
                    
             
        
        
        
Answer:
$34.86
Step-by-step explanation:
21 x 0.66 = 13.86
21 + 13.86 = 34.86