Answer:
Photosystem I, however, does not act as a proton pump; instead, it uses these high-energy electrons to reduce NADP+ to NADPH. The reaction center chlorophyll of photosystem I transfers its excited electrons through a series of carriers to ferrodoxin, a small protein on the stromal side of the thylakoid membrane.
Explanation:
What are your answer choices?
Long-term potentiation (LTP) is considered a cellular correlate of learning and memory. The presence of G protein-activated inwardly rectifying K(+) (GIRK) channels near excitatory synapses on dendritic spines suggests their possible involvement in synaptic plasticity. However, whether activity-dependent regulation of channels affects excitatory synaptic plasticity is unknown. In a companion article we have reported activity-dependent regulation of GIRK channel density in cultured hippocampal neurons that requires activity oF receptors (NMDAR) and protein phosphatase-1 (PP1) and takes place within 15 min. In this study, we performed whole-cell recordings of cultured hippocampal neurons and found that NMDAR activation increases basal GIRK current and GIRK channel activation mediated by adenosine A(1) receptors, but not GABA(B) receptors. Given the similar involvement of NMDARs, adenosine receptors, and PP1 in depotentiation of LTP caused by low-frequency stimulation that immediately follows LTP-inducing high-frequency stimulation, we wondered whether NMDAR-induced increase in GIRK channel surface density and current may contribute to the molecular mechanisms underlying this specific depotentiation. Remarkably, GIRK2 null mutation or GIRK channel blockade abolishes depotentiation of LTP, demonstrating that GIRK channels are critical for depotentiation, one form of excitatory synaptic plasticity.
Learn more about receptors here:
brainly.com/question/11985070
#SPJ4
The answer is "<span> It has all cell types found in other forms of connective tissue."
The areolar tissue situated in the skin ties the external layers of the skin to the muscles underneath. Areolar tissue is additionally found in or on mucous layers, and around veins, nerves, and the organs of the body.
</span>