It is D, not here because they are all dependent.
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
3 ( x ) + 55 = 85
Answer To Solving Y:
Let's solve your equation step-by-step.
3x + 55 = 85
Step 1: Subtract 55 from both sides.
3x + 55 − 55 = 85 − 55
3x = 30
Step 2: Divide both sides by 3.
3x / 3 = 30 / 3
x = 10
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
Answer To The Angle:
( 3 ) ( 10 ) + 55 = 85
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
2 ( y ) - 5 = 95
Answer:
Let's solve your equation step-by-step.
2y − 5 = 95
Step 1: Add 5 to both sides.
2y − 5 + 5 = 95 + 5
2y = 100
Step 2: Divide both sides by 2.
2y / 2 = 100 / 2
y = 50
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
Answer To The Angle:
( 2 ) ( 50 ) − 5 = 95
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
Please don't come at me if I am wrong.....:\
<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3<3
But, the anwer should be 180 degrees
<h3>
Answer: C) 3</h3>
=========================================================
Explanation:
f(x) is the outer function, so the final output -8 corresponds to f(x)
We see that f(-4) = -8 in the first column of the table. I'm starting with the output and working my way backward to get the input. So we started with -8 and worked back to -4.
Then we move to the g(x) function to follow the same pattern: start with the output and move to the input. We start at -4 in the g(x) bubble and move to 3 in the x bubble.
In short, g(3) = -4
So,
f(g(x)) = f(g(3)) = f(-4) = -8
We see that x = 3 leads to f(g(x)) = -8
Answer:
2x+9y=18
Step-by-step explanation:
Distribute the denominator
y=-2/9x+2
9y=-2x+2
9y+2x=2
im sorry if this is wrong
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
<h3>How to determine the angles of a triangle inscribed in a circle</h3>
According to the figure, the triangle BTC is inscribed in the circle by two points (B, C). In this question we must make use of concepts of diameter and triangles to determine all missing angles.
Since AT and BT represent the radii of the circle, then the triangle ABT is an <em>isosceles</em> triangle. By geometry we know that the sum of <em>internal</em> angles of a triangle equals 180°. Hence, the measure of the angles A and B is 64°.
The angles ATB and BTC are <em>supplmentary</em> and therefore the measure of the latter is 128°. The triangle BTC is also an <em>isosceles</em> triangle and the measure of angles TBC and TCB is 26°.
By geometric and algebraic properties the angles BTC, TBC and TBC from the triangle BTC are 128°, 26° and 26°, respectively.
To learn more on triangles, we kindly invite to check this verified question: brainly.com/question/2773823