Answer:
<em>The fraction of the beads that are red is</em>
Step-by-step explanation:
<u>Algebraic Expressions</u>
A bag contains red (r), yellow (y), and blue (b) beads. We are given the following ratios:
r:y = 2:3
y:b = 5:4
We are required to find r:s, where s is the total of beads in the bag, or
s = r + y + b
Thus, we need to calculate:
![\displaystyle \frac{r}{r+y+b} \qquad\qquad [1]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7Br%2By%2Bb%7D%20%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B1%5D)
Knowing that:
![\displaystyle \frac{r}{y}=\frac{2}{3} \qquad\qquad [2]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7By%7D%3D%5Cfrac%7B2%7D%7B3%7D%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B2%5D)

Multiplying the equations above:

Simplifying:
![\displaystyle \frac{r}{b}=\frac{5}{6} \qquad\qquad [3]](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Br%7D%7Bb%7D%3D%5Cfrac%7B5%7D%7B6%7D%20%20%20%20%20%20%20%5Cqquad%5Cqquad%20%20%20%20%5B3%5D)
Dividing [1] by r:

Substituting from [2] and [3]:

Operating:



The fraction of the beads that are red is 
Answer:
p-value~ 0.075
Step-by-step explanation:
( Choice D on Khan Academy)
Assume that each material in each category has an equal chance of being selected.
Categories:
(a) Type of wood used to make the cabinet: birch, maple, cherry.
Each type of wood has a probability of 1/3 to be selected.
(b) Type of finish: transparent, semi-transparent.
Each type of finish has a probability of 1/2 to be selected.
(c) Knob: bronze, steel, wood.
Each material has 1/3 probability to be selected.
Each event (selecting material for the cabinet, for the finish, and for the knob) is an independent event.
Therefore
Probablity(birch wood AND bronze knob) = (1/3)*(1/3) = 1/9
Probability(wood knob) = 1/3
Probability(transparent stain) = 1/2
Probability(cheryy wood AND semi-transparent stain) = (1/3)*(1/2) = 1/6