1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
luda_lava [24]
3 years ago
5

What is the simplest form of this expression? -x2(6x-8)+3x3

Mathematics
1 answer:
DedPeter [7]3 years ago
6 0
12x^2+16x+9 that is the simplest answer 
You might be interested in
How can you tell if a fraction is a perfect square?
zimovet [89]

Answers: A fraction is a perfect square if it's reduced version (of an improper fraction if the number is greater than 1) has both numerator and denominator numbers that are perfect squares. IE: 25/36 is a perfect square because both 25 and 36 are perfect squares.

Step-by-step explanation:

So for example 5/25 is a perfect square but 2/5 wouldn't be a perfect square.

Tell me if this helped you

7 0
3 years ago
What is -1/8 times 16 2/3?.
antiseptic1488 [7]
Your answer is -2 1/12. :)
5 0
3 years ago
For f(x) = 4x +1 and g(x) = x2 - 5, find (g/f) (x).
Softa [21]

Answer:

\left(g/f\right)\left(x\right)=\frac{x}{4}-\frac{1}{16}-\frac{79}{16\left(4x+1\right)}

Step-by-step explanation:

f(x)=4x+1

g\left(x\right)=x^2\:-\:5

As

(g/f)(x) = g(x) / f(x)

            =\:\frac{x^2\:-\:5}{4x+1}\:\:\:\:\:\:

            =\frac{x}{4}+\frac{-\frac{x}{4}-5}{4x+1}

              =\frac{x}{4}-\frac{1}{16}+\frac{-\frac{79}{16}}{4x+1}

               =\frac{x}{4}-\frac{1}{16}-\frac{79}{16\left(4x+1\right)}

Therefore,

\left(g/f\right)\left(x\right)=\frac{x}{4}-\frac{1}{16}-\frac{79}{16\left(4x+1\right)}

8 0
3 years ago
Find the six trig function values of the angle 240*Show all work, do not use calculator
-BARSIC- [3]

Solution:

Given:

240^0

To get sin 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, sin 240 will be negative.

sin240^0=sin(180+60)

Using the trigonometric identity;

sin(x+y)=sinx\text{ }cosy+cosx\text{ }siny

Hence,

\begin{gathered} sin(180+60)=sin180cos60+cos180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ sin180cos60+cos180sin60=0(\frac{1}{2})+(-1)(\frac{\sqrt{3}}{2}) \\ sin180cos60+cos180sin60=0-\frac{\sqrt{3}}{2} \\ sin180cos60+cos180sin60=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ sin240^0=-\frac{\sqrt{3}}{2} \end{gathered}

To get cos 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, cos 240 will be negative.

cos240^0=cos(180+60)

Using the trigonometric identity;

cos(x+y)=cosx\text{ }cosy-sinx\text{ }siny

Hence,

\begin{gathered} cos(180+60)=cos180cos60-sin180sin60 \\ sin180=0 \\ cos60=\frac{1}{2} \\ cos180=-1 \\ sin60=\frac{\sqrt{3}}{2} \\  \\ Thus, \\ cos180cos60-sin180sin60=-1(\frac{1}{2})-0(\frac{\sqrt{3}}{2}) \\ cos180cos60-sin180sin60=-\frac{1}{2}-0 \\ cos180cos60-sin180sin60=-\frac{1}{2} \\  \\ Hence, \\ cos240^0=-\frac{1}{2} \end{gathered}

To get tan 240 degrees:

240 degrees falls in the third quadrant.

In the third quadrant, only tangent is positive. Hence, tan 240 will be positive.

tan240^0=tan(180+60)

Using the trigonometric identity;

tan(180+x)=tan\text{ }x

Hence,

\begin{gathered} tan(180+60)=tan60 \\ tan60=\sqrt{3} \\  \\ Hence, \\ tan240^0=\sqrt{3} \end{gathered}

To get cosec 240 degrees:

\begin{gathered} cosec\text{ }x=\frac{1}{sinx} \\ csc240=\frac{1}{sin240} \\ sin240=-\frac{\sqrt{3}}{2} \\  \\ Hence, \\ csc240=\frac{1}{\frac{-\sqrt{3}}{2}} \\ csc240=-\frac{2}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ csc240=-\frac{2}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ csc240^0=-\frac{2\sqrt{3}}{3} \end{gathered}

To get sec 240 degrees:

\begin{gathered} sec\text{ }x=\frac{1}{cosx} \\ sec240=\frac{1}{cos240} \\ cos240=-\frac{1}{2} \\  \\ Hence, \\ sec240=\frac{1}{\frac{-1}{2}} \\ sec240=-2 \\  \\ Thus, \\ sec240^0=-2 \end{gathered}

To get cot 240 degrees:

\begin{gathered} cot\text{ }x=\frac{1}{tan\text{ }x} \\ cot240=\frac{1}{tan240} \\ tan240=\sqrt{3} \\  \\ Hence, \\ cot240=\frac{1}{\sqrt{3}} \\  \\ Rationalizing\text{ the denominator;} \\ cot240=\frac{1}{\sqrt{3}}\times\frac{\sqrt{3}}{\sqrt{3}} \\  \\ Thus, \\ cot240^0=\frac{\sqrt{3}}{3} \end{gathered}

5 0
1 year ago
Find the volume cube—e = 5 cm
slamgirl [31]
If it's 5cm x 5 cm x 5cm 

Volume is a3

so 125cm 
6 0
3 years ago
Other questions:
  • 3X +112 equals 180 solve for X
    8·1 answer
  • How can you use geometry figures to solve real world problems
    13·1 answer
  • What percent of 29.5 is 10.03
    8·1 answer
  • Ten divided by the difference of a number and 2​, minus 9 divided by a number plus 2​, equals 5 times the reciprocal of the diff
    7·1 answer
  • What is an inequality
    14·1 answer
  • HELP PLS ITS DUE TONIGHT<br><br>STEP BY STEP
    9·1 answer
  • Slope: 2<br> Point: (3,-5)
    6·1 answer
  • Do the two trapezoids in the figure appear to be similar? Why or why not?
    9·1 answer
  • Sheleah and her family are planning a trip from Los Angeles, California to Melbourne, Australia. While booking her family's plan
    13·2 answers
  • Choose the appropriate pattern and use it to find the product: (p4−q4)(p4+q4).
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!