We are to find the time at which the height of basketball thrown by Eli and Karl is equal. We have the functions which model the heights of both basketballs. So by equating the functions representing the height of both basketballs we can find the value of x from that equation at which the height is same for both basketballs.

Thus after 1.25 seconds the height of basketballs thrown by Eli and Karl will be at the same height. This can be verified by finding the heights of both at x=1.25
For Eli:

For Karl:

Thus height of both basketball is equal after 1.25 seconds
Answer:
The car must have a speed of 25 kilometres per hour to stop after moving 7 metres.
Step-by-step explanation:
Let be
, where
is the stopping distance measured in metres and
is the speed measured in kilometres per hour. The second-order polynomial is drawn with the help of a graphing tool and whose outcome is presented below as attachment.
The procedure to find the speed related to the given stopping distance is described below:
1) Construct the graph of
.
2) Add the function
.
3) The point of intersection between both curves contains the speed related to given stopping distance.
In consequence, the car must have a speed of 25 kilometres per hour to stop after moving 7 metres.
Answer:
One
Step-by-step explanation:
A, B, R and C lie on the same plane, while the others do not