1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DiKsa [7]
3 years ago
12

Determine whether the data set could represent a linear function. type yes or no.

Mathematics
1 answer:
DaniilM [7]3 years ago
6 0
Where's the photo of the data set?
You might be interested in
Find the difference. <br> $-12-7=$
kramer
Answer: -5
-12 is going to stay a negative and your going to change the -7 into a positive 7 because your subtracting. And you make it a negative because 12 is a bigger number then 7
6 0
3 years ago
The equation yˆ=−5.131x2+31.821x−3.333 approximates the number of people standing in line to catch a commuter train x hours afte
masya89 [10]
Given that y is the number of people in the line after 5 am and there are already 3 hours that have passed for 8 am, we substitute 3 to the equation to find the answer.
                        y = (-5.131)(3²) + 31.821(3) - 3.333
Simplifying,
                         y = 45.951
Thus, the answer is letter C. 46. 
7 0
4 years ago
Section 5.2 Problem 19:
rjkz [21]

Answer:

y(x)=2xe^{3x} (See attached graph)

Step-by-step explanation:

To solve a second-order homogeneous differential equation, we need to substitute each term with the auxiliary equation am^2+bm+c=0 where the values of m are the roots:

y''-6y'+9y=0\\\\m^2-6m+9=0\\\\(m-3)^2=0\\\\m-3=0\\\\m=3

Since the values of m are equal real roots, then the general solution is y(x)=C_1e^{m_1x}+C_2xe^{m_1x}.

Thus, the general solution for our given differential equation is y(x)=C_1e^{3x}+C_2xe^{3x}.

To account for both initial conditions, take the derivative of y(x), thus, y'(x)=3C_1e^{3x}+C_2e^{3x}+3C_2xe^{3x}

Now, we can create our system of equations given our initial conditions:

y(x)=C_1e^{3x}+C_2xe^{3x}\\ \\y(0)=C_1e^{3(0)}+\frac{C_2}{6}(0)e^{3(0)}=0\\ \\C_1=0

y'(x)=3C_1e^{3x}+C_2e^{3x}+3C_2xe^{3x}\\\\y'(0)=3C_1e^{3(0)}+C_2e^{3(0)}+3C_2(0)e^{3(0)}=2\\\\3C_1+C_2=2

We then solve the system of equations, which becomes easy since we already know that C_1=0:

3C_1+C_2=2\\\\3(0)+C_2=2\\\\C_2=2

Thus, our final solution is:

y(x)=C_1e^{3x}+C_2xe^{3x}\\\\y(x)=2xe^{3x}

3 0
2 years ago
Find the sum.<br> 14,389 + 4,309
pochemuha

Answer:

18698

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
Solve the inequality 2x + 8 &lt; 5x - 4
Novay_Z [31]
The answer is A) X > 4

4 0
3 years ago
Read 2 more answers
Other questions:
  • Which expression is EQUIVALENT to (m^8 n^-4) 1/4 ?
    14·1 answer
  • Geometry 25 points. PLEASE help and show work ya boy be struggling
    11·1 answer
  • The speed of nitrogen molecules in the atmosphere (at 20ºC) follows a normal distribution with a mean speed of 500 meters/second
    11·2 answers
  • In a coordinate plane, plot the points and sketch angle. Write the coordinates of a point that lies in the interior of the<br> a
    13·1 answer
  • Use the quadratic formula to solve the equation. If necessary, round to the nearest hundredth.
    11·2 answers
  • I need help very fast please!
    12·2 answers
  • Candy store A sells bags of candy for a flat fee of $5 plus $12 per pound. Candy store B sells their candy for $6 plus $10 per p
    5·1 answer
  • If people with one arm go to get their nails done, do they pay half price?
    7·2 answers
  • What is the sequence of 1. 4. 6. 24. 26
    8·1 answer
  • Abby needs to take a taxi to go to the movies, the taxi charges 4.00 flag fee for the pick up and then 2.75 for each mile driven
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!