Answer:
Chromosomes are the structures found in the nucleus of a cell. They are made from DNA, containing hereditary information in the form of genes that control how an organism will look and behave.
Chromosomes come in homologous pairs (one from each parent) that each contain thousands of genes, determining traits expressed in the offspring.
Explanation:
Chromosomes are the structures found in the nucleus of a cell. They are made from DNA, containing hereditary information in the form of genes that control how an organism will look and behave. - this is true. Prior to cell division, DNA molecules are organized into large structures called chromosomes. Specific regions of a DNA molecule are called genes. These dictate specific proteins which control our traits.
Genes contain thousands of chromosomes that carry specific information about building proteins for a particular trait. - this is false - genes are segments of DNA that control specific traits by dictating the structure and functions of proteins. Chromosomes contain thousands of genes
Chromosomes are small sections of DNA that contain specific information about a trait to build proteins that people inherit. The thousands of different chromosomes passed from the parents allow for humans to look uniquely different.
- this is false - chromosomes are large structures, genes are the relatively small sections of DNA. Humans have 23 pairs of chromosomes, not thousands.
Chromosomes come in homologous pairs (one from each parent) that each contain thousands of genes, determining traits expressed in the offspring. - this is true. In diploid organisms, like humans, have two copies of each chromosome. These chromosomes contain slightly different versions of genes, which make us unique.
Fatty acids aren't pure fat and same for glycerol molecules. You may not be consuming straight fat, but things that create fat in your system.
What are my options for this question?
Answer:
1. G° = -RT ln (G1P/P)
3.1 = 8.314 × 310 × ln (G1P/P)
3.1 / 2577.34 = ln (G1P/P)
0.0012 = ln (G1P/P)
0.0012 = (log G1P/P)/log 2.71828
0.4342 × 0.0012 = log G1P/P
0.00052 = log G1P/P
G1P/P = 10^0.00052 = 1.0012
P/G1P = 1/1.0012 = 0.9988
2. The cleavage of glycogen phosphorolytically is beneficial for the cell to conduct the process as the discharged glucose is phosphorylated. A general hydrolytic cleavage would give rise to only a glucose, which has to be phosphorylated again with the help of ATP.
Another merit of phosphorylated glucose is that it comprises the negative charge and cannot diffuse out of the muscle cell. Thus, the reaction will not be at equilibrium under the physiological conditions and always encourages the generation of the products. The formation of products will amend the change in free energy in such a manner that the reaction will always carry in the forward direction.
3. Greater the ratio of [Pi]/[glucose-1-phosphate], higher will be the relative rate of glycogen phosphorylase in comparison to the phosphoglucomutase as the transformation of Glu-1-P becomes slow because of lesser accessibility of substrate.