Step-by-step explanation:
The area of a circle = pi r^2
d = 2r Divide by 2 to get the radius
r = d/2
The diameter = 2.8 cm
r = d/2
r = 2.8/2
r = 1.4
The area of the circle = pi * r^1
The area of the circle = 3.14 * 1.4^2
The area of the circle = 6.1544
But you are working with a semic circle
The area of a semicircle is 1/2 that of a circle
Area of semicircle = 1/2 6.1544 = 3.0772 =3.08 when rounded
Answer:
x−2x4+2x3−7x2−8x+12=x3+4x2+x−6
The rational root theorem suggests that other possible roots may be -6, 6, -3, 3, -2, 2, -1, and 1. It turns out that x=-2x=−2 is a root, since (-2)^3+4(-2)^2+(-2)-6=0(−2)3+4(−2)2+(−2)−6=0 , so x+2x+2 is also a factor and we have
\dfrac{x^4+2x^3-7x^2-8x+12}{(x-2)(x+2)}=x^2+2x-3(x−2)(x+2)x4+2x3−7x2−8x+12=x2+2x−3
Finally, we can factorize the remaining quotient easily:
x^2+2x-3=(x+3)(x-1)x2+2x−3=(x+3)(x−1)
so the other factors are x+2x+2 , x+3x+3 , and x-1x−1 .
A=43°
B=82°
c=28
1) A+B+C=180°
Replacing A=43° and B=82° in the equation above:
43°+82°+C=180°
125°+C=180°
Solving for C. Subtracting 125° both sides of the equation:
125°+C-125°=180°-125°
C=55° (option B or C)
2) Law of sines
a/sin A=b/sin B=c/sin C
Replacing A=43°, B=82°, C=55°, and c=28 in the equation above:
a/sin 43°=b/sin 82°=28/sin 55°
2.1) a/sin 43°=28/sin 55°
Solving for a. Multiplying both sides of the equation by sin 43°:
sin 43°(a/sin 43°)=sin 43°(28/sin 55°)
a=28 sin 43° / sin 55°
Using the calculator: sin 43°=0.681998360, sin 55°=0.819152044
a=28(0.681998360)/0.819152044
a=23.31185549
Rounded to one decimal place
a=23.3
2.2) b/sin 82°=28/sin 55°
Solving for a. Multiplying both sides of the equation by sin 82°:
sin 82°(b/sin 82°)=sin 82°(28/sin 55°)
b=28 sin 82° / sin 55°
Using the calculator: sin 82°=0.990268069, sin 55°=0.819152044
b=28(0.990268069)/0.819152044
b=33.84903466
Rounded to one decimal place
b=33.8
Answer: Option B) C=55°, b=33.8, a=23.3
Answer:
Acute and Obtuse..I cant see any right
Step-by-step explanation:
Answer:
75%
Step-by-step explanation: