1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
USPshnik [31]
3 years ago
14

The base of the triangle is one and a half times it's height. what is height if area is 75

Mathematics
2 answers:
Setler [38]3 years ago
8 0
H=15cm
b=10cm 
i think, i asked my mom thats a teacher and she said it was correct.
Margarita [4]3 years ago
8 0
Answer:  The height is: 10.61 units. 
                       {or, write as:  "(7.5 √2)  units"}. 
_____________________________________________________
Explanation:
_____________________________________________________
Area of a triangle:  A = 1/2 * base * height = 1/2 * b * h ;

Given:  b = 1.5 * h ;
           A = 75 units²
______________________________
Solve for "h" ("height") ;  h = 1.5 b ;
_________________________________
So, we solve for "b" ; then we plug that value into the equation: 
  
        →   h = 1.5 b ;  to get the height, "h" ;
______________________________________________________
        →   75 = 1/2 * (b) (1.5 b) ;
______________________________________________________
         Multiply the ENTIRE equation by "2" ;
  to get rid of the fraction and decimals ; 
______________________________________________________
       →   2 * { 75 = 1/2 * (b) (1.5 b) } ;
______________________________________________________
       →  150  =  b * 3b ;
______________________________________________________
       →  150  =  3 b²  ;  
 
       ↔ 3 b²  =  150 ; 
______________________________________________________
 
            Now, divide EACH side of the equation by "3" ;
_________________________________________________
       →  3 b² / 3 = 150 / 3 ; 
_________________________________________________
       →     b²  =  50 ;
_________________________________________________
           Now, take the POSITIVE square root of each side of the equation;
to isolate "b" on one side of the equation; and to solve for "b" ;
_________________________________________________
        →   √(b²)  =  √50
<span>_________________________________________________
</span>        →      b  =  √50
_________________________________________________
        →     √50 = √25 *√2 = 5√2
_________________________________________________
        h = (1.5) b = (1.5) *(5) (
_____________________________________________________
Explanation:
_____________________________________________________
Area of a triangle:  A = 1/2 * base * height = 1/2 * b * h ;

Given:  b = 1.5 h ;
           A = 75 units²
______________________________
Solve for "h" ("height") ;  h = 1.5 b ;
_________________________________
So, we solve for "b" ; then we plug that value into the equation: 
  
        →   h = 1.5 b ;  to get the height, "h" ;
______________________________________________________
        →   75 = 1/2 * (b) (1.5 b) ;
______________________________________________________
         Multiply the ENTIRE equation by "2" ; 
  to get rid of the fraction and decimals ; 
______________________________________________________
       →   2 * { 75 = 1/2 * (b) (1.5 b) } ;
______________________________________________________
       →  150  =  b * 3b ;
______________________________________________________
       →  150  =  3 b²  ;  
 
       ↔ 3 b²  =  150 ; 
______________________________________________________
 
            Now, divide EACH side of the equation by "3" ;
_________________________________________________
       →  3 b² / 3 = 150 / 3 ; 
_________________________________________________
       →     b²  =  50 ;
_________________________________________________
           Now, take the POSITIVE square root of each side of the equation; 
to isolate "b" on one side of the equation; and to solve for "b" ;
_________________________________________________
        →   √(b²)  =  √50
_________________________________________________
        →      b  =  √50
_________________________________________________
        →      b  =  √50 = √25 *√2 = 5√2
_________________________________________________
        →      h = 1.5 * 5 * √2 ;
_________________________________________________
       →    h = (7.5 √2)  units ;
                           
                      or,  (7.5) * (√2) = 10.6066017177982129 units ;
_______________________________________________________
                                            → round to 10.61 units .
_______________________________________________________
You might be interested in
How do I find these equations using substitution y=-3x+5 and 5x-4y=-3 ?
lapo4ka [179]

Answer:

x=1

Step-by-step explanation:

you would change it to 5x-4(-3x+5)=-3, because you put the info for the first equation into the second equation.

5x-4(-3x+5)=-3

5x+12x-20=-3

17x-20=-3

17x=17

x=1

6 0
3 years ago
Read 2 more answers
A type of green paint is made by mixing 2 cups of yellow with 3.5 cups of blue.
leonid [27]

Answer:

4 cups of yellow with 7 cups of blue

Step-by-step answer:

simply just double both amounts of paint and the ratios should even making the same shade of paint

8 0
3 years ago
Quadrilateral ABCD is similar to quadrilateral EFGH. What is the length of<br> segment BC?
prohojiy [21]
So Basically, these are similar. So that means that (2x/5.5)=(3x-3/7.5). Then when you cross multiply, you find that x=11. So that means BA/FE=22/5.5=4. You can verify by checking (3*11-3)/7.4=4. So now that you know the scale factor is 4, just do 4*8=32.
6 0
3 years ago
Read 2 more answers
If M is the midpoint of XY, find the coordinates of X if M(-3,-1) and Y(-8,6)
vova2212 [387]
\bf \textit{middle point of 2 points }\\ \quad \\&#10;\begin{array}{lllll}&#10;&x_1&y_1&x_2&y_2\\&#10;%  (a,b)&#10;X&({{ a}}\quad ,&{{ b}})\quad &#10;%  (c,d)&#10;Y&({{ -8}}\quad ,&{{ 6}})&#10;\end{array}\qquad&#10;%   coordinates of midpoint &#10;\left(\cfrac{{{ x_2}} + {{ x_1}}}{2}\quad ,\quad \cfrac{{{ y_2}} + {{ y_1}}}{2} \right)

\bf \left( \cfrac{-8+a}{2}~,~\cfrac{6+b}{2} \right)=\stackrel{M}{(-3,-1)}\implies &#10;\begin{cases}&#10;\cfrac{-8+a}{2}=-3\\\\&#10;-8+a=-6\\&#10;\boxed{a=2}\\&#10;----------\\&#10;\cfrac{6+b}{2}=-1\\\\&#10;6+b=-2\\&#10;\boxed{b=-8}&#10;\end{cases}
5 0
3 years ago
Find x <br> –3(x – 4) + x = 2x – 12
raketka [301]

Answer:

x=6

Step-by-step explanation:

3 0
3 years ago
Other questions:
  • What is the area of the polygon given below?
    7·2 answers
  • I need help with my algebra 2. I also want to know how to solve this.
    8·1 answer
  • Find the solution of the system of equations.<br><br> −6x+6y= −24<br> −6x+9y= −45
    6·1 answer
  • An ice cream shop sells an empty cone for 4.00 plus an additional 1.25 per scoop of ice cream. You have 6.75 to spend. How many
    7·1 answer
  • Find x to the nearest tenth
    13·1 answer
  • Please helppppppppppp​
    11·2 answers
  • The engine life for a certain brand of lawnmower is modeled by the function f(h)=50-1/3h where h represents hours used. What doe
    5·2 answers
  • Every year, more than 100,000 testers take the Law School Admission Test (LSAT). One year, the scores had a mean and standard de
    6·1 answer
  • To calculate 587 ÷ 1,000, how many decimal points to the left should the decimal in 587 move?
    14·1 answer
  • Change the following fraction to a percent 4/50
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!