Answer: The height is: 10.61 units. {or, write as: "(7.5 √2) units"}. _____________________________________________________ Explanation: _____________________________________________________ Area of a triangle: A = 1/2 * base * height = 1/2 * b * h ;
Given: b = 1.5 * h ; A = 75 units² ______________________________ Solve for "h" ("height") ; h = 1.5 b ; _________________________________ So, we solve for "b" ; then we plug that value into the equation:
→ h = 1.5 b ; to get the height, "h" ; ______________________________________________________ → 75 = 1/2 * (b) (1.5 b) ; ______________________________________________________ Multiply the ENTIRE equation by "2" ; to get rid of the fraction and decimals ; ______________________________________________________ → 2 * { 75 = 1/2 * (b) (1.5 b) } ; ______________________________________________________ → 150 = b * 3b ; ______________________________________________________ → 150 = 3 b² ;
Now, divide EACH side of the equation by "3" ; _________________________________________________ → 3 b² / 3 = 150 / 3 ; _________________________________________________ → b² = 50 ; _________________________________________________ Now, take the POSITIVE square root of each side of the equation; to isolate "b" on one side of the equation; and to solve for "b" ; _________________________________________________ → √(b²) = √50 <span>_________________________________________________ </span> → b = √50 _________________________________________________ → √50 = √25 *√2 = 5√2 _________________________________________________ h = (1.5) b = (1.5) *(5) ( _____________________________________________________ Explanation: _____________________________________________________ Area of a triangle: A = 1/2 * base * height = 1/2 * b * h ;
Given: b = 1.5 h ; A = 75 units² ______________________________ Solve for "h" ("height") ; h = 1.5 b ; _________________________________ So, we solve for "b" ; then we plug that value into the equation:
→ h = 1.5 b ; to get the height, "h" ; ______________________________________________________ → 75 = 1/2 * (b) (1.5 b) ; ______________________________________________________ Multiply the ENTIRE equation by "2" ; to get rid of the fraction and decimals ; ______________________________________________________ → 2 * { 75 = 1/2 * (b) (1.5 b) } ; ______________________________________________________ → 150 = b * 3b ; ______________________________________________________ → 150 = 3 b² ;
Now, divide EACH side of the equation by "3" ; _________________________________________________ → 3 b² / 3 = 150 / 3 ; _________________________________________________ → b² = 50 ; _________________________________________________ Now, take the POSITIVE square root of each side of the equation; to isolate "b" on one side of the equation; and to solve for "b" ; _________________________________________________ → √(b²) = √50 _________________________________________________ → b = √50 _________________________________________________ → b = √50 = √25 *√2 = 5√2 _________________________________________________ → h = 1.5 * 5 * √2 ; _________________________________________________ → h = (7.5 √2) units ; or, (7.5) * (√2) = 10.6066017177982129 units ; _______________________________________________________ → round to 10.61 units . _______________________________________________________
Answer: No, the side lengths of 5, 5 and 10 would not be able to.
So the answer is FALSE.
This is because all the lengths must be enough so that when you add the side lengths they are greater then the other, all would work accept 5+5 is not greater than 10.