Answer:
How does one find use partial quotients for subration
Step-by-step explanation:
Peaches to plums. 15 divided by 3 is 5, 12 divided by 3 is 4.
Answer:
15
Step-by-step explanation:
Note that f(x) as given is <em>not</em> invertible. By definition of inverse function,


which is a cubic polynomial in
with three distinct roots, so we could have three possible inverses, each valid over a subset of the domain of f(x).
Choose one of these inverses by restricting the domain of f(x) accordingly. Since a polynomial is monotonic between its extrema, we can determine where f(x) has its critical/turning points, then split the real line at these points.
f'(x) = 3x² - 1 = 0 ⇒ x = ±1/√3
So, we have three subsets over which f(x) can be considered invertible.
• (-∞, -1/√3)
• (-1/√3, 1/√3)
• (1/√3, ∞)
By the inverse function theorem,

where f(a) = b.
Solve f(x) = 2 for x :
x³ - x + 2 = 2
x³ - x = 0
x (x² - 1) = 0
x (x - 1) (x + 1) = 0
x = 0 or x = 1 or x = -1
Then
can be one of
• 1/f'(-1) = 1/2, if we restrict to (-∞, -1/√3);
• 1/f'(0) = -1, if we restrict to (-1/√3, 1/√3); or
• 1/f'(1) = 1/2, if we restrict to (1/√3, ∞)
Answer:
Primer número = x = 85
Segundo número = y = 255
Tercer número = z = 510
Step-by-step explanation:
Se sabe que la suma de tres números es 850. El primero es un tercio del segundo y el tercer número es el doble del segundo.
Representamos:
Primer número = x
Segundo número = y
Tercer número = z
Se sabe que la suma de tres números es 850.
x + y + z = 850 ...... Ecuación 1
El primero es un tercio del segundo
x = 1/3 años
El tercer número es el doble del segundo.
z = 2 años
Sustituimos 1 / 3y por x y 2y por z en la Ecuación 1
1 / 3y + y + 2y = 850
y / 3 + 3y = 850
Multiplica ambos lados por 3
y + 9y = 850 × 3
10 años = 2550
y = 2550/10
y = 255
Resolviendo para x
x = 1/3 años
x = 1/3 × 255
x = 85
z = 2 años
z = 2 × 255
z = 510
Por eso,
Primer número = x = 85
Segundo número = y = 255
Tercer número = z = 510