According to the probles represented above, there is addition of two angles which makes it totally clear. I am pretty sure that the answer with the actual reason of this task is the second option <span>B. Angle Addition Postulate, as you can see a couple of new angles in there :)
Regards!</span>
Answer:
x = 144
Step-by-step explanation:
What you need to remember about this geometry is that all of the triangles are similar. As with any similar triangles, that means ratios of corresponding sides are proportional. Here, we can write the ratios of the long leg to the short leg and set them equal to find x.
x/60 = 60/25
Multiply by 60 to find x:
x = (60·60)/25
x = 144
_____
<em>Comment on this geometry</em>
You may have noticed that the above equation can be written in the form ...
60 = √(25x)
That is, the altitude from the hypotenuse (60) is equal to the geometric mean of the lengths into which it divides the hypotenuse (25 and x).
This same sort of "geometric mean" relation holds for other parts of this geometry, as well. The short leg of the largest triangle (the hypotenuse of the one with legs 25 and 60) is the geometric mean of the short hypotenuse segment (25) and the total hypotenuse (25+x).
And, the long leg of the large triangle (the hypotenuse of the one with legs 60 and x) is the geometric mean of the long hypotenuse segment (x) and the total hypotenuse (25+x).
While it can be a shortcut in some problems to remember these geometric mean relationships, you can always come up with what you need by simply remembering that the triangles are all similar.
Answer:
84 degrees
Step-by-step explanation:
Angle A = 83 degrees
Angle B = x degrees
Angle C = 135 degrees
Angle CDE = 122 degrees
We know that the four inner corners of a quadrilateral should add up to 360 degrees. Two supplementary angles will add up to 180 degrees. Adjacent angles on a straight line will always be supplementary. Knowing this, just solve for <ADC and add that amount to <A and <C. Then, subtract that sum from 360 degrees.
<ADC = 180-122 = 58
58+83+135 = 276
360-276 = 84 degrees
Answer:
The average rate of change of the function over the interval is of 6.
Step-by-step explanation:
Average rate of change:
The average rate of change of a function h(x) over an interval [a,b] is given by:

In this question:
Over the interval [-9,-2], so 
The function is:



Then

The average rate of change of the function over the interval is of 6.
If i simplify number 6 it would be -55/63