The answer is D.
The full specification of Newton's First Law is (from Wikipedia)
In an inertial frame of reference, an object either remains at rest or continues to move at a constant velocity, unless acted upon by a force.
On earth we're generally in slightly a non-inertial frame, with rotation and revolution around the sun. It's also impossible to turn of gravity, so objects are being acted upon by an outside force. Typically there's also the outside force of friction, which makes things tend to stop.
Some equivalent fractions of 8/3 are:
8/3 = 16/6 = 24/9 = 32/12 = 40/15 = 48/18 = 56/21 = 64/24 = 72/27 = 80/30 = 88/33 = 96/36 = 104/39 = 112/42 = 120/45 = 128/48 = 136/51 = 144/54 = 152/57 = 160/60
Unfortunately, you haven't shared the "figure below" that shows the dimensions of this parcel of land. Without being able to calculate the area of the parcel, you cannot really answer this question exactly.
Suppose that the area of the parcel were 6000 square meters. Dividing that by 1500 square meters, we get 4, which represents the number of zebras that can live on this (example) parcel.
Figure out the area of your parcel, in square meters, and thend divide your result by 1500 square meters. This will give your your answer. Please note: your answer will be a COUNT of zebras. "meters" does not belong in this answer.
<h3>
The probability of picking a red face card from the deck is 
</h3><h3>
The probability of NOT picking a red face card from the deck is 
</h3>
Step-by-step explanation:
The total number of cards in the deck = 52
The total number of red( Diamond + Hearts) face cards in the given deck
= 2 Red Queens + 2 Red jacks + 2 Red kings = 6 cards
Let E : Event of picking a red face card from the deck
Now , P( any event) = 
So, here P(Picking a red face card) = 
Hence, the probability of picking a red face card from the deck is 
Now, as we know P (any event NOT A) = 1 - P(any event A)
So, P(NOT Picking a red face card) = 1 - P(Picking a red face card)
Hence, the probability of NOT picking a red face card from the deck is 