Answer:
    11g2h2 + h2 + 13
  ———————————
                 h2       
Step-by-step explanation:
Step  1  :
             4
 Simplify   ——
            h2
Equation at the end of step  1  :
                9              4
  ((((4•(g2))+————)+(7•(g2)))+——)+1
              (h2)            h2
 Step  2  :
Equation at the end of step  2  :
                9         4
  ((((4•(g2))+————)+7g2)+——)+1
              (h2)       h2
 Step  3  :
             9
 Simplify   ——
            h2
Equation at the end of step  3  :
               9        4
  ((((4•(g2))+——)+7g2)+——)+1
              h2       h2
 Step  4  :
Equation at the end of step  4  :
              9              4     
  (((22g2 +  ——) +  7g2) +  ——) +  1
             h2             h2     
Step  5  :
Rewriting the whole as an Equivalent Fraction :
 5.1   Adding a fraction to a whole
Rewrite the whole as a fraction using  h2  as the denominator :
             22g2     22g2 • h2
     22g2 =  ————  =  —————————
              1          h2    
Equivalent fraction : The fraction thus generated looks different but has the same value as the whole
Common denominator : The equivalent fraction and the other fraction involved in the calculation share the same denominator
Adding fractions that have a common denominator :
 5.2       Adding up the two equivalent fractions
Add the two equivalent fractions which now have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
 22g2 • h2 + 9     4g2h2 + 9
 —————————————  =  —————————
      h2              h2    
Equation at the end of step  5  :
    (4g2h2 + 9)             4     
  ((——————————— +  7g2) +  ——) +  1
        h2                 h2     
Step  6  :
Rewriting the whole as an Equivalent Fraction :
 6.1   Adding a whole to a fraction
Rewrite the whole as a fraction using  h2  as the denominator :
           7g2     7g2 • h2
    7g2 =  ———  =  ————————
            1         h2   
Adding fractions that have a common denominator :
 6.2       Adding up the two equivalent fractions
 (4g2h2+9) + 7g2 • h2      11g2h2 + 9
 ————————————————————  =  ——————————
          h2                  h2    
Equation at the end of step  6  :
   (11g2h2 + 9)     4     
  (———————————— +  ——) +  1
        h2         h2     
Step  7  :
Adding fractions which have a common denominator :
 7.1       Adding fractions which have a common denominator
Combine the numerators together, put the sum or difference over the common denominator then reduce to lowest terms if possible:
 (11g2h2+9) + 4     11g2h2 + 13
 ——————————————  =  ———————————
       h2               h2     
Equation at the end of step  7  :
  (11g2h2 + 13)    
  ————————————— +  1
       h2          
Step  8  :
Rewriting the whole as an Equivalent Fraction :
 8.1   Adding a whole to a fraction
Rewrite the whole as a fraction using  h2  as the denominator :
         1     1 • h2
    1 =  —  =  ——————
         1       h2  
Adding fractions that have a common denominator :
 8.2       Adding up the two equivalent fractions
 (11g2h2+13) + h2     11g2h2 + h2 + 13
 ————————————————  =  ————————————————
        h2                   h2       
Trying to factor a multi variable polynomial :
 8.3    Factoring    11g2h2 + h2 + 13 
Try to factor this multi-variable trinomial using trial and error 
 Factorization fails
Final result :
  11g2h2 + h2 + 13
  ————————————————
         h2       
Processing ends successfully
plz mark me as brainliest :)