Answer:
$102
Step-by-step explanation:
34x3=102
34+34+34=102
There are three people total, each paid 34. Add each person's total to the others, or multiply by three.
Answer:
Base = 10 cm
Height = 60 cm
Step-by-step explanation:
The formula for the area of a triangle is
, where <em>b</em> is the length of the base of the triangle, and <em>h</em> is the length of the height of the triangle.
We know the area is 300, and since the height of the triangle is 6 times its base, we know that
. We can plug in these values into our formula for the area of a triangle, which gives us the following equation to solve:



The base of the triangle is 10 centimeters.
Now that we know the base of the triangle, we can plug its value in to the original formula to solve for the height of the triangle, which gives us the following equation:



The height of the triangle is 60 centimeters.
Answer:
Square shaped = 27 cubic inches , Rectangular shaped = 3LW cubic Inches
Step-by-step explanation:
If the dictionary is a square ( all sides are equal ) the the volume is
V = Length * Length * Length = 
V = 3 * 3 * 3 = 27 
while if its rectangular ( all side are not equal ) shaped
V = Length * Width * Height (thickness)
V = L * W * 3 = 3LW 
Answer:

Explanation:
1. Use the scale ratio to set a proportion with the unknown lenght.

2. To solve for x, use cross multiplication:

3. Divide both sides by 24inches:

4. Simplify:

The Volume of the given solid using polar coordinate is:![\frac{-1}{6} \int\limits^{2\pi}_ {0} [(60) ^{3/2} \; -(64) ^{3/2} ] d\theta](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B6%7D%20%5Cint%5Climits%5E%7B2%5Cpi%7D_%20%7B0%7D%20%5B%2860%29%20%5E%7B3%2F2%7D%20%5C%3B%20-%2864%29%20%5E%7B3%2F2%7D%20%5D%20d%5Ctheta)
V= ![\frac{-1}{6} \int\limits^{2\pi}_ {0} [(60) ^{3/2} \; -(64) ^{3/2} ] d\theta](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B6%7D%20%5Cint%5Climits%5E%7B2%5Cpi%7D_%20%7B0%7D%20%5B%2860%29%20%5E%7B3%2F2%7D%20%5C%3B%20-%2864%29%20%5E%7B3%2F2%7D%20%5D%20d%5Ctheta)
<h3>
What is Volume of Solid in polar coordinates?</h3>
To find the volume in polar coordinates bounded above by a surface z=f(r,θ) over a region on the xy-plane, use a double integral in polar coordinates.
Consider the cylinder,
and the ellipsoid, 
In polar coordinates, we know that

So, the ellipsoid gives

4(
) +
= 64
= 64- 4(
)
z=± 
So, the volume of the solid is given by:
V= ![\int\limits^{2\pi}_ 0 \int\limits^1_0{} \, [\sqrt{64-4r^{2} }- (-\sqrt{64-4r^{2} })] r dr d\theta](https://tex.z-dn.net/?f=%5Cint%5Climits%5E%7B2%5Cpi%7D_%200%20%5Cint%5Climits%5E1_0%7B%7D%20%5C%2C%20%5B%5Csqrt%7B64-4r%5E%7B2%7D%20%7D-%20%28-%5Csqrt%7B64-4r%5E%7B2%7D%20%7D%29%5D%20r%20dr%20d%5Ctheta)
= 
To solve the integral take,
= t
dt= -8rdr
rdr = 
So, the integral
become
=
= 
=
so on applying the limit, the volume becomes
V= 
=![\frac{-1}{6} \int\limits^{2\pi}_ {0} [(64-4(1)^{2}) ^{3/2} \; -(64-4(2)^{0}) ^{3/2} ] d\theta](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B6%7D%20%5Cint%5Climits%5E%7B2%5Cpi%7D_%20%7B0%7D%20%5B%2864-4%281%29%5E%7B2%7D%29%20%5E%7B3%2F2%7D%20%5C%3B%20-%2864-4%282%29%5E%7B0%7D%29%20%5E%7B3%2F2%7D%20%5D%20d%5Ctheta)
V = ![\frac{-1}{6} \int\limits^{2\pi}_ {0} [(60) ^{3/2} \; -(64) ^{3/2} ] d\theta](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B6%7D%20%5Cint%5Climits%5E%7B2%5Cpi%7D_%20%7B0%7D%20%5B%2860%29%20%5E%7B3%2F2%7D%20%5C%3B%20-%2864%29%20%5E%7B3%2F2%7D%20%5D%20d%5Ctheta)
Since, further the integral isn't having any term of
.
we will end here.
The Volume of the given solid using polar coordinate is:![\frac{-1}{6} \int\limits^{2\pi}_ {0} [(60) ^{3/2} \; -(64) ^{3/2} ] d\theta](https://tex.z-dn.net/?f=%5Cfrac%7B-1%7D%7B6%7D%20%5Cint%5Climits%5E%7B2%5Cpi%7D_%20%7B0%7D%20%5B%2860%29%20%5E%7B3%2F2%7D%20%5C%3B%20-%2864%29%20%5E%7B3%2F2%7D%20%5D%20d%5Ctheta)
Learn more about Volume in polar coordinate here:
brainly.com/question/25172004
#SPJ4