Step-by-step explanation:
The distance formula between two points:
Substitute the coordinates of the points.
If a ≤ b < c are the sides of the right triangle, then
a² + b² = c²
used for a ≥ 0.
therefore ΔABC is a right triangle.
Answer:
1.
2.
3. 3
4. -1 > x
Step-by-step explanation:
1.
2.
3. All share the factor of 3
4. Open circle is used for < (less than) or > (greater than). Shade to the right for > or ≥.
I hope this helps! May I please have brainliest? :)
Answer:
The range of a function is the set of outputs the function can give
The y-axis on the graph shows as the output of the function
From the graph, we can see that the outputs of this specific function range from 0 to 5
Therefore, the range of this function is: [0 , 5]
Answer:
You didn't add a specific time frame so I can you a correct answer.
Explanation:
⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣤⣄⠄⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣿⣿⣿⣿⣷⡒⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⡀⣹⣿⣿⣿⣿⣿⣯⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣀⣀⣴⣿⣿⣿⣿⣿⣿⠿⠋⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⢀⣀⣤⣶⣾⠿⠿⠿⠿⣿⣿⣿⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄ ⠄⡶⣶⡿⠛⠛⠉⠉⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⣿⣿⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠘⠃⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⣿⣿⣿⡟⠁⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣤⣾⣷⣿⣿⣿⣿⡏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⠂⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⢀⣤⣴⣾⣿⣿⣿⣿⡿⠛⠻⣿⣿⣿⣿⡇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠸⣿⣿⣿⣿⠋⠉⠄⠄⠄⠄⣼⣿⣿⡿⠇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠈⠻⣿⣿⣆⠄⠄⠄⠄⠄⣿⣿⣿⣷⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠻⣿⣿⣆⡀⠄⠄⠈⠻⣿⣿⣿⣦⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣌⣿⣿⣿⣦⡄⠄⠄⠄⠙⠻⣿⣿⣦⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠁⠄⠄⠄⠄⠄⠄⠄⠘⠻⣿⢿⢖⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣴⣧⣤⣴⡖⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣷⣀⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⣿⣷⣶⡄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠈⠘⠻⢿⣿⣿⣿⣿⣿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣰⣿⣿⣿⣿⣿⣿⣿⣿⣿⡆⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⢤⣴⣦⣄⣀⣀⣴⣿⡟⢿⣿⡿⣿⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠉⠉⠙⠻⠿⣿⡿⠋⠄⠈⢀⣀⣠⣾⣿⣿⣿⣿⣿⡄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣇⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣴⣾⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⡏⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣶⣿⣿⣿⣿⣿⣿⣿⣿⣿⡟⠉⠋⠉⠉⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⠛⠛⣿⣿⣿⣿⣿⣿⣇⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠿⢛⣿⣿⣿⣿⣷⣤⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣶⣷⣿⣿⡉⠄⠄⠄⠄⠉⠉⠉⠉⠉⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠘⠛⠟⢿⣤⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⠄⣠⣶⣶⣷⣿⣶⡊⠄⠄⣀⣤⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣴⣶⣾⢿⣿⣿⣿⣿⣿⣿⣿⣿⣶⣿⣿⡏⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢸⣿⡍⠁⠄⠈⢿⣿⣿⣿⣿⣿⣿⣿⣿⠿⠁⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣼⣿⣿⣿⣿⣿⣿⣿⠏⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣿⡿⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢸⣿⣿⣿⣿⣿⡿⠋⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⠻⣿⣿⣿⣿⣡⣶⣶⣄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⣀⣀⣠⣴⣦⡤⣿⣿⣿⣿⡻⣿⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⣷⣿⣿⣿⣿⣿⣿⡟⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢻⣿⣿⡏⠉⠙⠛⢛⣿⣿⣿⣿⠟⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⢿⣿⡧⠄⠄⢠⣾⣿⣿⡿⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠈⣿⣿⣄⣼⣿⣿⣿⠏⠁⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠸⡿⣻⣿⣿⣿⣿⣆⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣻⠟⠈⠻⢿⣿⣿⣆⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠿⠍⠄⠄⠄⠄⠉⠻⣿⣷⡤⣀⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠈⢻⣿⡿⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⡯⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠸⠃⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢀⣠⣶⣶⣤⡀⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣾⣿⣿⣿⣿⣿⡞⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣿⣿⣿⣿⣿⣿⡿⢃⡀⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠘⢿⣿⣿⣿⣿⣿⣿⣿⣧⡀⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢈⣽⣿⣿⣿⣿⣿⣿⣿⢿⣷⣦⣀⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣸⣿⣿⣿⣿⣿⣿⣿⣿⠄⢉⣻⣿⡇⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢠⣿⣿⡉⣀⣿⣿⣿⣿⣋⣴⣿⠟⠋⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠄⠄⣠⣴⣿⣿⣿⣿⣿⣿⣿⣿⣿⣿⣏⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠄⢀⣀⣼⣿⣿⣿⣿⣿⣿⠿⢿⣿⣿⣿⣿⣿⣮⡠⠄⠄⠄⠄ ⠄⠄⠄⠄⢰⣾⣿⣿⡿⠿⠛⠛⠛⠉⠄⠄⠄⠄⠙⠻⢿⣿⣿⣿⣶⣆⡀⠄ ⠄⠄⠄⠄⠄⠹⣿⣿⣦⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⢉⣿⣿⣿⣿⣿⠂ ⠄⠄⠄⠄⠄⠄⠈⢿⣿⣇⠄⠄⠄⠄⠄⠄⠄⠄⠄⠄⣴⣾⣿⡿⠟⠉⠄⠄ ⠄⠄⠄⠄⠄⠄⠄⠂⢿⣿⣥⡄⠄⠄⠄⠄⢀⣠⣶⣿⣿⠟⠋⠁⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⣀⣤⣾⣿⣿⣷⣿⣃⡀⢴⣿⣿⡿⣿⣍⠄⠄⠄⠄⠄⠄⠄⠄ ⠄⠄⠄⠄⠄⠈⠉⠉⠉⠉⠉⠉⠉⠄⠄⠄⠉⠙⠛⠛⠛⠛⠂⠄⠄⠄⠄⠄