A. a new dwarf planet because dwarf planets are round
Answer:
Explanation:
1. glacial tills and cirques Till is derived from the erosion and entrainment of material by the moving ice of a glacier. It is deposited some distance down-ice to form terminal, lateral, medial, and ground moraine. Cirques form by the accumulation of snow and ice avalanching from upslope areas. The size of cirque glaciers ranges from glaciers that are completely limited within hosting bedrock hollows, to glaciers that form the heads of large valley glaciers.
2. ENERGY FROM THE SUN heats up the air at the equator most because of the curvature of the earth. This tends to rise up then head toward the poles where it cools and moves closer to the surface and then more or less back toward the equator.
THE ROTATION OF THE EARTH makes the movement of air relative to the surface of the earth seem to deflect. This Coriolis effect doesn't affect your toilet flushing, but does influence large scale wind patterns and hurricanes.
THE LATITUDE OF VANCOUVER roughly half way between the equator and the north pole positions us so the large scale wind patterns tend to bring us winds from the west.
THE PACIFIC OCEAN sits to the west. Winds pick up moisture from it toward shore. Large bodies of water also tend to hang on to energy that keeps our temperatures more moderate.
THE COAST MOUNTAINS push the moist air upward so it cools off and can't hold on to as much moisture, so it rains.
THE TILT OF THE EARTH'S AXIS relative to the plane of our orbit around the sun means we are tilted away from the sun during winter, so it's cooler. This results in a greater temperature gradient between the equator and the north pole, and the winds get stronger. The cooler temperatures combined with more moisture-ladened wind brings more rain during winter.
The correct answer is - false.
Glaciers have sculpted mountains, carved out valleys, made lots of glacial relief structures, and created thousands of glacial lakes over the past, but this process continues nowadays too. Even though in the present we only have glaciers at limited small parts of the planet, they are still active, and are doing their job in the formation of glacial relief forms. Lots of people tend to thing that the glaciers were only doing this in the past, but this is because they are very rare nowadays, and are shadowed by the more dominant factors in an inter-glacial period like we have at the moment.
Answer:something specific
Explanation: