Answer:
By comparing the ratios of sides in similar triangles ΔABC and ΔADB,we can say that 
Step-by-step explanation:
Given that ∠ABC=∠ADC, AD=p and DC=q.
Let us take compare Δ ABC and Δ ADB in the attached file , ∠A is common in both triangles
and given ∠ABC=∠ADB=90°
Hence using AA postulate, ΔABC ≈ ΔADB.
Now we will equate respective side ratios in both triangles.

Since we don't know BD , BC let us take first equality and plugin the variables given in respective sides.

Cross multiply

Hence proved.
the domain: no real numbers so its negative infinity, positive infinity
The answer to what the length of the leg would be is 15.
You would do this problem by first writing down your Pythagorean Theorem, which is a^2 + b^2 = c^2.
Since we have our hypotenuse which is c^2 in our equation, we would write or insert the number we have.
So our equation could be that a or b leg equals 20, it doesn’t matter which one.
So we could write, 20^2 + b^2 = 25^2. So we don’t know what b leg is.
First we should figure out what 20^2 is and what 25^2 is.
20^2 is 400 and 25^2 is 625.
Our equation now comes to 400 + b^2 = 625.
Now we take 400 and subtract it from
625 -> 400 + b^2 = 625
-400.
So 625 - 400 comes out to be 225.
Lastly instead of squaring or putting 225 to the second power, we do the opposite.
So instead of squaring 225 we must square root 225. √ 225 .
The square root of √ 225 comes out to be 15.
Step-by-step explanation:
please re ask question. its unvalid and please simplfy it
We can get the circumference of any circle in terms of the radius with this formula. C = 2

r.
Where r is the radius of the circle.
And we will use 3.14 for

.
Plug in all the values.
C = 2 * 3.14 * 2
C = 12.56
So, the circumference of the circle is 12.6 inches when rounded to the nearest tenth.