Answer:
y < -1.2
Step-by-step explanation:
Hii,
4/3 < -8/3 y
To get y by itself, you need to divide by -8/3 on both sides...
4/3 divided by -8/3 is the same thing as...
4/3 x -3/8
(when dividing fractions, simply flip the second fraction and multiply straight across)
After that, you get -12/24 which is the same thing as -1/2.
Since you divided by a negative, the inequality sign flips.
So...
-1/2 < y
is...
y < -1/2
Hope this helps!

the idea behind the completion of the square is simply using a perfect square trinomial, hmmm usually we do that by using our very good friend Mr Zero, 0.
if we look at the 2nd step, we have a group as x² - x, hmmm so we need a third element, which will be squared.
keeping in mind that the middle term of the perfect square trinomial is simply the product of the roots of "a" and "b", so in this case the middle term is "-x", and the 1st term is x², so we can say that

so that means that our missing third term for a perfect square trinomial is simply 1/2, now we'll go to our good friend Mr Zero, if we add (1/2)², we have to also subtract (1/2)², because all we're really doing is borrowing from Zero, so we'll be including then +(1/2)² and -(1/2)², keeping in mind that 1/4 - 1/4 = 0, so let's do that.
![-3~~ = ~~-2\left[ x^2-x+\left( \cfrac{1}{2} \right)^2 ~~ - ~~\left( \cfrac{1}{2} \right)^2\right]\implies -3=-2\left(x^2-x+\cfrac{1}{4}-\cfrac{1}{4} \right) \\\\\\ -3=-2\left(x^2-x+\cfrac{1}{4} \right)+(-2)-\cfrac{1}{4}\implies -3=-2\left(x^2-x+\cfrac{1}{4} \right)+\cfrac{1}{2} \\\\\\ -3-\cfrac{1}{2}=-2\left(x^2-x+\cfrac{1}{4} \right)\implies -\cfrac{7}{2}=-2\left(x-\cfrac{1}{2} \right)^2\implies \cfrac{7}{4}=\left(x-\cfrac{1}{2} \right)^2](https://tex.z-dn.net/?f=-3~~%20%3D%20~~-2%5Cleft%5B%20x%5E2-x%2B%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%20~~%20-%20~~%5Cleft%28%20%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%5Cright%5D%5Cimplies%20-3%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D-%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%20%5C%5C%5C%5C%5C%5C%20-3%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%2B%28-2%29-%5Ccfrac%7B1%7D%7B4%7D%5Cimplies%20-3%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%2B%5Ccfrac%7B1%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20-3-%5Ccfrac%7B1%7D%7B2%7D%3D-2%5Cleft%28x%5E2-x%2B%5Ccfrac%7B1%7D%7B4%7D%20%5Cright%29%5Cimplies%20-%5Ccfrac%7B7%7D%7B2%7D%3D-2%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2%5Cimplies%20%5Ccfrac%7B7%7D%7B4%7D%3D%5Cleft%28x-%5Ccfrac%7B1%7D%7B2%7D%20%5Cright%29%5E2)

Quite a vague question, I used desmos to graph the attached photo.