1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Allisa [31]
3 years ago
8

What is the coefficient of the second term of the trinomial?

Mathematics
2 answers:
marin [14]3 years ago
7 0
The coefficient of the second term is 18.

What you do is you FOIL the terms:
(3x+3)(3x+3)\\ Multiply\ the\ first\ terms\ together:\\ 3x*3x=9x^{2}\\ Then\ the\ outer\ terms:\\ 3x*3=9x\\ Next,\ the\ inner\ terms:\\ 3x*3=9x\\ Finally,\ multiply\ the\ last\ terms:\\ 3*3=9\\ Putting\ the\ terms\ together:\\ 9x^{2}+9x+9x+9=9x^{2}+18x+9\\\\ Since\ (3x+3)^{2}=9x^{2}+Bx+9=9x^{2}+18x+9,\ then \ B=18.
pishuonlain [190]3 years ago
7 0
Answer:  " 18 " .
_______________________
Explanation:
_____________________
  (3x + 3)²
 
 =   (3x + 3) (3x + 3)  ;
 
 =  Using "FOIL" method:  "First, Outer, Inner, and Last" terms ;
_____________________________________________________
First terms:  3x* 3x = 9x² ;
Outer terms:  3x * 3 = 9x ;
Inner terms:  3 * 3x = 9x ;
Last terms:   3 * 3 = 9 ;
________________________________
   So,  we have:  " 9x² + 9x + 9x + 9" ;
______________________________
      Combine the "like forms" to simplify further:
_______________________________________
          The "like terms" are:  + 9x + 9x = 18x ; 
_______________________________________
 Rewrite the expression:  
_______________________________________
          " 9x²  + 18x +  9 ";
_________________________________________
We want to find the coefficient of the second term in the trinomial given:
_________________________________________
          " 9x² + <span /><em>B</em>x + 9 "  ; 
_________________________________________
The coefficient of the second term in this polynomial is: "<em>B</em>" ;
_________________________________________
                <em>B</em><em /> = 18 .
_________________________________________
The answer is:  " 18 " .
_________________________________________
You might be interested in
Which is the slowest reading rate? *
madam [21]
Answer: 4 pages in 10 minutes
explanation: 2.5min/page
6 0
3 years ago
The product of the roots of x² 6x - 55 = 0 is:
Firdavs [7]
The roots of  x^{2} 6x-55=0 the answer is going to be

the roots is going to 3[1980/6}
x= 2.09284539
3 0
3 years ago
Read 2 more answers
Solve the equation on the interval [0,2π]
WARRIOR [948]
\bf 16sin^5(x)+2sin(x)=12sin^3(x)&#10;\\\\\\&#10;16sin^5(x)+2sin(x)-12sin^3(x)=0&#10;\\\\\\&#10;\stackrel{common~factor}{2sin(x)}[8sin^4(x)+1-6sin^2(x)]=0\\\\&#10;-------------------------------\\\\&#10;2sin(x)=0\implies sin(x)=0\implies \measuredangle x=sin^{-1}(0)\implies \measuredangle x=&#10;\begin{cases}&#10;0\\&#10;\pi \\&#10;2\pi &#10;\end{cases}\\\\&#10;-------------------------------

\bf 8sin^4(x)+1-6sin^2(x)=0\implies 8sin^4(x)-6sin^2(x)+1=0

now, this is a quadratic equation, but the roots do not come out as integers, however it does have them, the discriminant, b² - 4ac, is positive, so it has 2 roots, so we'll plug it in the quadratic formula,

\bf 8sin^4(x)-6sin^2(x)+1=0\implies 8[~[sin(x)]^2~]^2-6[sin(x)]^2+1=0&#10;\\\\\\&#10;~~~~~~~~~~~~\textit{quadratic formula}&#10;\\\\&#10;\begin{array}{lcccl}&#10;& 8 sin^4& -6 sin^2(x)& +1\\&#10;&\uparrow &\uparrow &\uparrow \\&#10;&a&b&c&#10;\end{array} &#10;\qquad \qquad &#10;sin(x)= \cfrac{ -  b \pm \sqrt {  b^2 -4 a c}}{2 a}&#10;\\\\\\&#10;sin(x)=\cfrac{-(-6)\pm\sqrt{(-6)^2-4(8)(1)}}{2(8)}\implies sin(x)=\cfrac{6\pm\sqrt{4}}{16}&#10;\\\\\\&#10;sin(x)=\cfrac{6\pm 2}{16}\implies sin(x)=&#10;\begin{cases}&#10;\frac{1}{2}\\\\&#10;\frac{1}{4}&#10;\end{cases}

\bf \measuredangle x=&#10;\begin{cases}&#10;sin^{-1}\left( \frac{1}{2} \right)&#10;sin^{-1}\left( \frac{1}{4} \right)&#10;\end{cases}\implies \measuredangle x=&#10;\begin{cases}&#10;\frac{\pi }{6}~,~\frac{5\pi }{6}\\&#10;----------\\&#10;\approx~0.252680~radians\\&#10;\qquad or\\&#10;\approx~14.47751~de grees\\&#10;----------\\&#10;\pi -0.252680\\&#10;\approx 2.88891~radians\\&#10;\qquad or\\&#10;180-14.47751\\&#10;\approx 165.52249~de grees&#10;\end{cases}
3 0
3 years ago
Demonstrate how you can use the slope formula to write the point-slope form of an equation of a line.
nevsk [136]
This is how I did it.

5 0
3 years ago
338.08=8(0.07m+28.90+.30(28.90)
AlladinOne [14]

Answer:

m= - 396.253089

Step-by-step explanation:

hope this helps

5 0
2 years ago
Other questions:
  • Below are statements that can be used to prove that the triangles are similar. Which two statements are missing in steps 3 and 4
    15·2 answers
  • Neil wants to buy some video games over the Internet. Each game costs $25.01 and has a shipping cost of $9.98 per order. If Neil
    6·2 answers
  • Does anyone know how to solve one of these ?
    15·1 answer
  • Work out the value of x and y in this diagram. All measurement are in centimeters​
    14·1 answer
  • Evaluate functions for k(x) =6x+100
    10·1 answer
  • Evan can jog 1 1/3 miles in 1/4 hour. Part a find his average speed in miles per hour
    9·1 answer
  • An object with a mass of 3.2 kg has a force of 7.3 newtons applied to it. What is the resulting acceleration of the object?
    5·1 answer
  • Find the value of x.
    6·2 answers
  • How do you know that the bowling pins are set up in parallel lines?
    10·1 answer
  • The sum of two numbers is 55 and the difference is 15 what are the numbers
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!