= Using "FOIL" method: "First, Outer, Inner, and Last" terms ; _____________________________________________________ First terms: 3x* 3x = 9x² ; Outer terms: 3x * 3 = 9x ; Inner terms: 3 * 3x = 9x ; Last terms: 3 * 3 = 9 ; ________________________________ So, we have: " 9x² + 9x + 9x + 9" ; ______________________________ Combine the "like forms" to simplify further: _______________________________________ The "like terms" are: + 9x + 9x = 18x ; _______________________________________ Rewrite the expression: _______________________________________ " 9x² + 18x + 9 "; _________________________________________ We want to find the coefficient of the second term in the trinomial given: _________________________________________ " 9x² + <span /><em>B</em>x + 9 " ; _________________________________________ The coefficient of the second term in this polynomial is: "<em>B</em>" ; _________________________________________ <em>B</em><em /> = 18 . _________________________________________ The answer is: " 18 " . _________________________________________
Esma can fit 3 packages in the box because 20+10+10=30 and 5+2+2=9 so if you add up 9 three times you get 27 and that is the closest number you can get before going over.
Furthest from 0, so I am going to take the absolute value of these numbers. The absolute value will tell us how far away from 0 these numbers are. |-1/2| = |- 0.5| = 0.5 |8/9| = |0.88| = 0.88 |0.2| = 0.2