1) We calculate the volume of a metal bar (without the hole).
volume=area of hexagon x length
area of hexagon=(3√3 Side²)/2=(3√3(60 cm)²) / 2=9353.07 cm²
9353.07 cm²=9353.07 cm²(1 m² / 10000 cm²)=0.935 m²
Volume=(0.935 m²)(2 m)=1.871 m³
2) we calculate the volume of the parallelepiped
Volume of a parallelepiped= area of the section x length
area of the section=side²=(40 cm)²=1600 cm²
1600 cm²=(1600 cm²)(1 m² / 10000 cm²=0.16 m²
Volume of a parallelepiped=(0.16 m²)(2 m)=0.32 m³
3) we calculate the volume of a metal hollow bar:
volume of a metal hollow bar=volume of a metal bar - volume of a parallelepiped
Volume of a metal hollow bar=1.871 m³ - 0.32 m³=1.551 m³
4) we calculate the mass of the metal bar
density=mass/ volume ⇒ mass=density *volume
Data:
density=8.10³ kg/m³
volume=1.551 m³
mass=(8x10³ Kg/m³ )12. * (1.551 m³)=12.408x10³ Kg
answer: The mas of the metal bar is 12.408x10³ kg or 12408 kg
Answer:
x=12
Step-by-step explanation:
Answer:
-17 =x
Step-by-step explanation:
144 = -12 (x + 5)
Divide each side by -12
144/-12 = -12 (x + 5)/-12
-12 = x+5
Subtract 5 from each side
-12-5 =x+5-5
-17 =x
Let x be the total weekly sales.
His salary is $300/week + 1.8% (x), if he wants to earn $570, then:
300 + 1.8%(x) = 570
1.8%(x) = 270
0.018 (x) = 270
and x = 270/0.018 = $15,000
Answer:
m = 4
you can find the answer for this on m a t h w a y (without the spaces)
I hope this helps!