1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Romashka-Z-Leto [24]
2 years ago
6

3 1/2+(-6)-(-1 1/2-9 3/4)

Mathematics
1 answer:
poizon [28]2 years ago
8 0

Answer:

Now I dont know if the three in the front is supposed to be in there or if its numbering the problem so I solved it with and without it. The first ones with and the second one without.

=8 3/4

(Decimal: 8.75)

=5 3/4

(Decimal: 5.75)

You might be interested in
Which is a y-intercept of the continuous function in the table? х – 4 -3 -2 -1 0 1 f(x) -10 0 0 – 4 -6 0 2 O (0,6) O (-2, 0) O (
Alexxandr [17]

Answer:

x:-4,-3,-2,-1,0,1

f(x):-10,0,0,-4,-6,0

from the table we can see when x=0, y=-6

Therefore the y-intercept will be (0,-6)

<u>OAmalOHopeO</u>

<u />

8 0
3 years ago
|. Identify the following Pōints of each values.Write your ans
Dmitry_Shevchenko [17]
<h2>✒️VALUE</h2>

\\ \quad  \begin{array}{c} \qquad \bold{Distance \: \green{ Formula:}}\qquad\\ \\ \boldsymbol{ \tt d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}} \end{array}\\  \begin{array}{l} \\ 1.)\: \bold{Given:}\: \begin{cases}\tt D(- 5,6), E(2.-1),\textsf{ and }F(x,0) \\ \tt DF = EF \end{cases} \\ \\  \qquad\bold{Required:}\:\textsf{ value of }x \\ \\ \qquad \textsf{Solving for }x, \\ \\  \tt  \qquad DF = EF \\ \\  \implies\small \tt{\sqrt{(x -(- 5))^2 + (0 - 6)^2} = \sqrt{(x - 2)^2 + (0 - (-1))^2}} \\ \\   \implies\tt\sqrt{(x + 5)^2 + 36 } = \sqrt{(x - 2)^2 + 1 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies\tt (x + 5)^2 + 36 = (x - 2)^2 + 1 \\ \\  \implies\tt x^2 + 10x + 25 + 36 = x^2 - 4x + 4 + 1 \\ \\ \implies \tt x^2 + 10x + 61 = x^2 - 4x + 5 \\ \\   \implies\tt10x + 4x = 5 - 61 \\ \\   \implies\tt14x = -56 \\ \\  \implies \red{\boxed{\tt x = -4}}\end{array}  \\  \\  \\  \\\begin{array}{l} \\ 2.)\: \bold{Given:}\: \begin{cases}\tt P(6,-1), Q(-4,-3),\textsf{ and }R(0,y) \\ \tt PR = QR \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }y \\ \\  \qquad\textsf{Solving for }y, \\ \\  \qquad\tt PR = QR \\ \\  \implies \tt\small{\sqrt{(0 - 6)^2 + (y - (-1))^2} = \sqrt{(0 - (-4))^2 + (y - (-3))^2}} \\ \\   \implies\tt\sqrt{36 + (y + 1)^2} = \sqrt{16 + (y + 3)^2 } \\ \\ \textsf{Squaring both sides yields} \\ \\  \implies \tt \: 36 + (y + 1)^2 = 16 + (y + 3)^2 \\ \\  \implies\tt 36 + y^2 + 2y + 1 = 16 + y^2 + 6y + 9 \\ \\  \implies \tt \: y^2 + 2y + 37 = y^2 + 6y + 25 \\ \\  \implies \tt \: 2y - 6y = 25 - 37 \\ \\ \implies \tt -4y = -12 \\ \\   \implies\red{\boxed{ \tt y = 3}} \end{array}  \\  \\  \\ \begin{array}{l} \\ 3.)\: \bold{Given:}\: \begin{cases}\: A(4,5), B(-3,2),\textsf{ and }C(x,0) \\ \: AC = BC \end{cases} \\ \\ \bold{Required:}\:\textsf{ value of }x \\ \\  \qquad\textsf{Solving for }x, \\ \\   \qquad\tt AC = BC \\ \\ \implies\tt\small{\sqrt{(x - 4)^2 + (0 - 5)^2} = \sqrt{(x - (-3))^2 + (0 - 2)^2}} \\ \\ \implies\tt\sqrt{(x - 4)^2 + 25} = \sqrt{(x + 3)^2 + 4} \\ \\ \textsf{Squaring both sides yields} \\ \\ \implies\tt\:(x - 4)^2 + 25 = (x + 3)^2 + 4 \\ \\ \implies\tt\:x^2 - 8x + 16 + 25 = x^2 + 6x + 9 + 4 \\ \\ \implies\tt\:x^2 - 8x + 41 = x^2 + 6x + 13 \\ \\ \implies\tt-8x - 6x = 13 - 41 \\ \\\implies\tt -14x = -28 \\ \\ \implies\red{\boxed{\tt\:x = 2}} \end{array}

#CarryOnLearning

#BrainlyMathKnower

#5-MinutesAnswer

7 0
2 years ago
What is the length of the arc if: 11. r=10 n=20 A15(pi)/ 7 B13(pi)/ 5 C16(pi)/ 2 D11(pi)/ 4 E 10(pi)/ 9 F 9(pi)/ 4 12. r=3 n=6 A
Vilka [71]

Step-by-step explanation:

The formula for arc length [for the angle in degrees] is:

L = 2\pi r \left(\dfrac{n}{360}\right)

here,

n = degrees

r = radius

using this we'll solve all the parts:

r = 10, n = 20:

L = 2\pi r \left(\dfrac{n}{360}\right)

L = 2\pi (10) \left(\dfrac{20}{360}\right)

from here, it is just simplification:

2 and 360 can be resolved: 360 divided by 2 = 180

L = \pi (10) \left(\dfrac{20}{180}\right)

10 and 180 can be resolved: 180 divided by 10 = 18

L = \pi \left(\dfrac{20}{18}\right)

finally, both 20 and 18 are multiples of 2 and can be resolved:

L = \pi \left(\dfrac{10}{9}\right)

L = \dfrac{10\pi}{9} Option (E)

r=3, n=6:

L = 2\pi r \left(\dfrac{n}{360}\right)

L = 2\pi (3) \left(\dfrac{6}{360}\right)

L = \dfrac{\pi}{10} Option (D)

r=4 n=7

L = 2\pi r \left(\dfrac{n}{360}\right)

L = 2\pi (4) \left(\dfrac{7}{360}\right)

L = \dfrac{7\pi}{45} Option (C)

r=2 n=x

L = 2\pi r \left(\dfrac{n}{360}\right)

L = 2\pi (2) \left(\dfrac{x}{360}\right)

L = \dfrac{x\pi}{90} Option (D)

r=y n=x

L = 2\pi r \left(\dfrac{n}{360}\right)

L = 2\pi (y) \left(\dfrac{x}{360}\right)

L = \dfrac{xy\pi}{180} Option (E)

6 0
3 years ago
What do you do if the divisor (the number you're dividing
Annette [7]

Answer:

you can use decimals

Step-by-step explanation:

7 0
2 years ago
A shark swims at a rate of 18 feet per second while chasing his prey and then slows down to a rate of 7 feet per second. The sha
solong [7]
The answer would be, B
7 0
3 years ago
Other questions:
  • Endpoints P(0, 0) and Q(8, 4). Find the coordinates of the midpoint of .
    12·2 answers
  • What is 3/5 2/3 and 0.65 from least to greatest
    14·2 answers
  • Clara is completing a Math project. She has two ropes with lengths 126 cm and 291 cm. She wants to cut them into pieces of equal
    5·1 answer
  • What is equivalent to 9^x=27
    11·1 answer
  • The rate of change describes how the total cost changes with respect to time. Use this table to find the rate of change.
    9·2 answers
  • Find the sum of 5x3 3x²+5 and -2x²+6x²5
    9·1 answer
  • Which subtraction problem does NOT require zero pairs to solve using chips ? ( PLEASE ANSWER ASAP )
    15·1 answer
  • Evaluate Each Function:
    11·1 answer
  • Shane reads 16 pages in 8 minutes.
    6·2 answers
  • David has 10 yd. Of material that he wiil cut into 15in. Thick mats. How many mats can David make?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!