Answer:
(d) 71°
Step-by-step explanation:
The desired angle in the given isosceles triangle can be found a couple of ways. The Law of Cosines can be used, or the definition of the sine of an angle can be used.
<h3>Sine</h3>
Since the triangle is isosceles, the bisector of angle W is an altitude of the triangle. The hypotenuse and opposite side with respect to the divided angle are given, so we can use the sine relation.
sin(W/2) = Opposite/Hypotenuse
sin(W/2) = (35/2)/(30) = 7/12
Using the inverse sine function, we find ...
W/2 = arcsin(7/12) ≈ 35.685°
W = 2×36.684° = 71.37°
W ≈ 71°
<h3>Law of cosines</h3>
The law of cosines tells you ...
w² = u² +v² -2uv·cos(W)
Solving for W gives ...
W = arccos((u² +v² -w²)/(2uv))
W = arccos((30² +30² -35²)/(2·30·30)) = arccos(575/1800) ≈ 71.37°
W ≈ 71°
Answer:
x° = 37°
Step-by-step explanation:
* Lets revise some facts of a circle
- The secant is a line intersect the circle in two points
- If two secants intersect each other in a point outside the circle,
then the measure of the angle between them is half the difference
of the measures of their intercepted arcs
* Now lets solve the problem
- There is a circle
- Two secants of this circle intersect each other in a point outside
the circle
∴ The measure of the angle between them = 1/2 the difference of the
measures of their intercepted arcs
∵ The measure of the angle between them is x°
∵ The measures of their intercepted arcs are 26° and 100°
- Use the rule above to find x
∴ x° = 1/2 [ measure of the large arc - measure of small arc]
∵ The measure of the large arc is 100°
∵ The measure of the small arc is 26°
∴ x° = 1/2 [100 - 26] = 1/2 [74] = 37°
∴ x° = 37°
Downward communication strives for higher employee engagement and feedback.
I believe there are 210 blue counters in the bag im not sure but this is how i got this.
a whole will =1
1-.3=.7
there are 90 blue counters in .3 and there are 2.33333(repeat) in .7
so i multipled 2.3333(repeat) by 90. 2.3333(repeat)*90=210
-hope i got it right and that this helps-
p.s. i know it was confusing i have a very different way of thinking, lol.