All of the above points are valid for fossils' contributions in understanding the process of evolution. They allow us to study the ancestry, we can see the homologous organs or structures, if fossils are well-preserved; different fossils can lead us to follow the cycles of the changes that occurred during macroevolutions, and fossils can be used to study different populations which had different body structures for surviving in different environmental conditions.
The kingdom that this specific organism would belong to is fungi.
Why?
Because almost all fungi heavily depend on autotrophs for energy. Fungi can also be multicellular.
Please mark as brainliest, if you found this helpful.
Answer:
Explanation:
Pharmacophore (pharmacology) - The molecular framework responsible for a drug's biological activity. According to IUPAC — A pharmacophore is the ensemble of steric and electronic features that is necessary to ensure the optimal supramolecular interactions with a specific biological target structure and to trigger (or to block) its biological response.
Privileged structures are defined as molecular frameworks which are able of providing useful ligands for more than one type of receptor or enzyme target by judicious structural modifications.
1) The 1,4-dihydropyridine ring is present in many biologically important molecules that acts as an important scaffold for cardiovascular drug - a calcium antagonists and although it is technically not considered as a pharmacophore, it is considered as a privileged structure.
1,4-Dihydropyridine (DHP), belongs to the class of calcium antagonist that inhibits the influx of extracellular Ca+2 through the L-type voltage-dependent calcium channels.
A positional substitution in the 4-position is feasible in the heterocyclic ring which in turn culminates in various calcium channel antagonist activities and this heterocyclic ring is the common feature for various pharmacological activities such as anti-inflammatory activity, analgesic activity,
antihypertensive, antianginal, antitumor, antitubercular activity and antithrombotic .
Position on the heterocyclic ring binds to the L-type channel and also to N-type channel on membranes.
2.) The bioisosteres are not a suitable bioisostere for the traditional C-4 aryl or heteroaryl substitution which is necessary for calcium ion blockage thereby inhibiting it to function with the mechanism shared above.