Answer:
the length=2.3m and breath=90cm find the perimeter and area of rectangle
<h2><u><em>
Answer: 1017.8760</em></u></h2><h2><u><em>
Step-by-step explanation:</em></u></h2><h2><u><em>
area A=πr2
</em></u></h2><h2><u><em>
A=π×182
</em></u></h2><h2><u><em>
A=324π
</em></u></h2><h2><u><em>
A=1017.87602
</em></u></h2><h2><u><em>
</em></u></h2><h2><u><em>
also, circumferenceC=2πr</em></u></h2><h2><u><em>
and, diameterd=2r</em></u></h2>
<u><em></em></u>
Answer:
34.9
Step-by-step explanation:
Because if you multiply then divide by 2 that will help you alot.
Answer:
1. x = 2√3 or 3.46
2. y = 4√3 or 6.93
3. z = 4√6 or 9.80
Step-by-step explanation:
1. Determination of the value of x.
Angle (θ) = 60°
Opposite = 6
Adjacent = x
Tan θ = Opposite /Adjacent
Tan 60 = 6 / x
√3 = 6/x
Cross multiply
x√3 = 6
Divide both side by √3
x = 6 / √3
Rationalise
x = (6 / √3) × (√3/√3)
x = 6√3 / 3
x = 2√3 or 3.46
2. Determination of the value of y.
Angle (θ) = 60°
Opposite = 6
Hypothenus = y
Sine θ = Opposite /Hypothenus
Sine 60 = 6/y
√3/2 = 6/y
Cross multiply
y√3 = 2 × 6
y√3 = 12
Divide both side by √3
y = 12/√3
Rationalise
y = (12 / √3) × (√3/√3)
y = 12√3 / 3
y = 4√3 or 6.93
3. Determination of the value of z.
Angle (θ) = 45°
Opposite = y = 4√3
Hypothenus = z
Sine θ = Opposite /Hypothenus
Sine 45 = 4√3 / z
1/√2 = 4√3 / z
Cross multiply
z = √2 × 4√3
z = 4√6 or 9.80
Answer:
12.78 units
Step-by-step explanation:
The formula for arc length =
2πr × θ/360
From the question:
θ = 122°
r = 6 units
Therefore, the arc length =
2 × π × 6 × (122/360)
= 12.775810125 units
Approximately to the nearest hundredth = 12.78 units
Therefore, the length of arc CE is 12.78 units