Answer:
Let isSubSetSum(int set[], int n, int sum) be the function to find whether there is a subset of set[] with sum equal to sum. n is the number of elements in set[].
The isSubsetSum problem can be divided into two subproblems
…a) Include the last element, recur for n = n-1, sum = sum – set[n-1]
…b) Exclude the last element, recur for n = n-1.
If any of the above the above subproblems return true, then return true.
Explanation:
Using C++
// A recursive solution for subset sum problem
#include <stdio.h>
// Returns true if there is a subset of set[] with sun equal to given sum
bool isSubsetSum(int set[], int n, int sum)
{
// Base Cases
if (sum == 0)
return true;
if (n == 0 && sum != 0)
return false;
// If last element is greater than sum, then ignore it
if (set[n-1] > sum)
return isSubsetSum(set, n-1, sum);
/* else, check if sum can be obtained by any of the following
(a) including the last element
(b) excluding the last element */
return isSubsetSum(set, n-1, sum) ||
isSubsetSum(set, n-1, sum-set[n-1]);
}
// Driver program to test above function
int main()
{
int set[] = {3, 34, 4, 12, 5, 2};
int sum = 9;
int n = sizeof(set)/sizeof(set[0]);
if (isSubsetSum(set, n, sum) == true)
printf("Found a subset with given sum");
else
printf("No subset with given sum");
return 0;
}
Output:
Found a subset with given sum