Answer:


or

Step-by-step explanation:
We are going to see if the exponential curve is of the form:
, (
).
If you are given the
intercept, then
is easy to find.
It is just the
coordinate of the
intercept is your value for
.
(Why? The
intercept happens when
. Replacing
with 0 gives
. This says when
.)
So
.
So our function so far looks like this:

Now to find
we need another point. We have two more points. So we will find
using one of them and verify for our resulting equation works for the other.
Let's do this.
We are given
is a point on our curve.
So when
,
.


Divide both sides by 8:

Reduce the fraction:

So the equation if it works out for the other point given is:

Let's try it. So the last point given that we need to satisfy is
.
This says when
,
.
Let's replace
with 2 and see what we get for
:






So we are good. We have found an equation satisfying all 3 points given.
The equation is
.
Answer:
a. 1/2
b. 1 hair cut
c. 2.5
Step-by-step explanation:
4/8 divde by 4 to simplify and that gets you 1/2
8/4 is 2 so he does one hair cut every two hours
so you know how many he can do in 2 hours so add it up. It’s going to be 2 people in four hours so it will be half a hair cut in 5 hours
Using law of cosines:
Cos(angle) = adjacent/ hypotenuse
Cos(22) = 12/x
Rewrite to get:
X = 12/cos(22)
Simplify:
X = 12.9424
Round the answer as needed.
Considering the given stem-and-leaf plot, the quartiles are given as follows:
- The first quartile is of 67.5.
- The second quartile, which is the median, is of 84.5.
- The third quartile is of 91.5.
<h3>What are the median and the quartiles of a data-set?</h3>
- The median of the data-set separates the bottom half from the upper half, that is, it is the 50th percentile.
- The first quartile is the median of the first half of the data-set.
- The third quartile is the median of the second half of the data-set.
There is an even number of elements(26), hence the median is the mean of the 13th and 14th elements, which are 83 and 86, hence:
Me = (83 + 86)/2 = 84.5.
The first half has 12 elements, hence the first quartile is the mean of the 6th and 7th elements, which are 67 and 68, hence:
Q1 = (67 + 68)/2 = 67.5.
The third half also has 12 elements, starting at the second 86, hence the third quartile is the mean of the 6th and 7th elements of this half, hence:
Q3 = (91 + 92)/2 = 91.5.
More can be learned about the quartiles of a data-set at brainly.com/question/28017610
#SPJ1