Answer:
Option E is correct.
The expected number of meals expected to be served on Wednesday in week 5 = 74.2
Step-by-step Explanation:
We will use the data from the four weeks to obtain the fraction of total days that number of meals served at lunch on a Wednesday take and then subsequently check the expected number of meals served at lunch the next Wednesday.
Week
Day 1 2 3 4 | Total
Sunday 40 35 39 43 | 157
Monday 54 55 51 59 | 219
Tuesday 61 60 65 64 | 250
Wednesday 72 77 78 69 | 296
Thursday 89 80 81 79 | 329
Friday 91 90 99 95 | 375
Saturday 80 82 81 83 | 326
Total number of meals served at lunch over the 4 weeks = (157+219+250+296+329+375+326) = 1952
Total number of meals served at lunch on Wednesdays over the 4 weeks = 296
Fraction of total number of meals served at lunch over four weeks that were served on Wednesdays = (296/1952) = 0.1516393443
Total number of meals expected to be served in week 5 = 490
Number of meals expected to be served on Wednesday in week 5 = 0.1516393443 × 490 = 74.3
Checking the options,
74.3 ≈ 74.2
Hence, the expected number of meals expected to be served on Wednesday in week 5 = 74.2
Hope this Helps!!!
Answer:
11x-8
Step-by-step explanation:

I uploaded the answer to a file hosting. Here's link:
bit.
ly/3a8Nt8n
Answer:
1/14
Step-by-step explanation:
Let A represent the event First person getting red velvet cake
Let B represent the event Second person getting red velvet cake
P(A) = Total number of Red Velvet Cakes ÷ Total Number of Cakes =
6/21 = 2/7
If the first person gets a red velvet cake, then there are 5 red velvet cakes and 20 total cakes
Therefore P(B|A) = Number of red velvet cakes left ÷ total number of cakes left = 5/20 = 1/4
P(A and B) == probability of both getting red velvet cake P(A∩B) = P(A).P(B|A) = 2/7 × 1/4 = 2/28 = 1/14