Answer:
Step-by-step explanation:
A 2nd order polynomial such as this one will have 2 roots; a 3rd order polynomial 3 roots, and so on.
The quadratic formula is one of the faster ways (in this situation, at least) in which to find the roots. From 2x^2 + 4x + 7 we get a = 2, b = 4 and c = 7.
Then the discriminant is b^2 - 4ac, or, here, 4^2 - 4(2)(7), or -40. Because the discriminant is negative, we know that the roots will be complex and unequal.
Using the quadratic formula:
-4 ±√[-40] -4 ± 2i√10
x = ------------------ = ------------------
4 4
-2 ± i√10
Thus, the roots are x = ------------------
2
The arc length is given by
.. s = rθ . . . . . . θ is the central angle in radians
.. = (8 in)*(35/180*π)
.. ≈ 4.9 in
_____
A disk 16 inches in diameter has a radius of 8 inches.
AB = 6 cm, AC = 12 cm, CD = ?
In triangle ABC, ∠CBA = 90°, therefore in triangle BCD ∠CBD = 90° also.
Since ∠BDC = 55°, ∠CBD = 90°, and there are 180 degrees in a triangle, we know ∠DCB = 180 - 55 - 90 = 35°
In order to find ∠BCA, use the law of sines:
sin(∠BCA)/BA = sin(∠CBA)/CA
sin(∠BCA)/6 cm = sin(90)/12 cm
sin(∠BCA) = 6*(1)/12 = 0.5
∠BCA = arcsin(0.5) = 30° or 150°
We know the sum of all angles in a triangle must be 180°, so we choose the value 30° for ∠BCA
Now add ∠BCA (30°) to ∠DCB = 35° to find ∠DCA.
∠DCA = 30 + 35 = 65°
Since triangle DCA has 180°, we know ∠CAD = 180 - ∠DCA - ∠ADC = 180 - 65 - 55 = 60°
In triangle DCA we now have all three angles and one side, so we can use the law of sines to find the length of DC.
12cm/sin(∠ADC) = DC/sin(∠DCA)
12cm/sin(55°) = DC/sin(60°)
DC = 12cm*sin(60°)/sin(55°)
DC = 12.686 cm
Hello :)
196 = 14.14 so the answer is D
169 = 13.13
144=12.12
121=11.11
Have a nice day :)
Answer:
v > - 6
Step-by-step explanation:
13 + 2v - 8 + 6 > -7 - v (calculate the sum of difference)
= 11 + 2v>-7-v (move variable to the left-hand side and change its sign and move constant to the right-hand side and change its sign)
= 2v + v > - 7 - 11 (collect like items and calculate the difference)
= 3v>-18 (divide both sides of the inequality by 3)
=v > - 6
*in parentheses is written what to do to get the next number*