
<u>We </u><u>have</u><u>, </u>
- Line segment AB
- The coordinates of the midpoint of line segment AB is ( -8 , 8 )
- Coordinates of one of the end point of the line segment is (-2,20)
Let the coordinates of the end point of the line segment AB be ( x1 , y1 ) and (x2 , y2)
<u>Also</u><u>, </u>
Let the coordinates of midpoint of the line segment AB be ( x, y)
<u>We </u><u>know </u><u>that</u><u>, </u>
For finding the midpoints of line segment we use formula :-

<u>According </u><u>to </u><u>the </u><u>question</u><u>, </u>
- The coordinates of midpoint and one of the end point of line segment AB are ( -8,8) and (-2,-20) .
<u>For </u><u>x </u><u>coordinates </u><u>:</u><u>-</u>





<h3><u>Now</u><u>, </u></h3>
<u>For </u><u>y </u><u>coordinates </u><u>:</u><u>-</u>





Thus, The coordinates of another end points of line segment AB is ( -14 , 36)
Hence, Option A is correct answer
Answer:
x=-0.544727
x=2.294727
Step-by-step explanation:
Given quadratic equation to solve:
To solve, use the quadratic formula
x= -b ± b² - 4ac / 2a
Substitute your values for a, b, & c and solve
x= -7 ± 7² - 4·(-4)·5 / 2·(-4)
x= -7 ± 49 - -80/-8
x= -7 ± 129/-8
Then, reduce the problem
x= -7/-8 ± 129/-8
x=-0.544727
x=2.294727
Answer:
86º
Step-by-step explanation: