Answer:
y=1; x=2
Step-by-step explanation:
Substitution:
x=2y
2x+5y=9
=> if x=2y, plug in the x value into other equation, so
----------------------------------------------------------------------------
2(2y)+5y=9
4y+5y=9
9y=9
y=1
You have the Y value, so now solve for X
-----------------------------------------------------------------------
plug in y value to x=2y
so x=2(1)
x=2
Answer:
P[J(y)] = 2/3 * J(y) -2
Step-by-step explanation:
Answer: The two roots are x = 3/2 and x = -2
=========================================================
Explanation:
You have the right idea so far. But the two numbers should be 3 and -4 since
The -1 being the coefficient of the x term.
This means you need to change the -3x and 4x to 3x and -4x respectively. The other inner boxes are correct.
---------
Refer to the diagram below to see one way to fill out the box method, and that helps determine the factorization.
If we place a 2x to the left of -2x^2, then we need an -x up top because 2x*(-x) = -2x^2
Then based on that outer 2x, we need a -2 up top over the -4x. That way we get 2x*(-2) = -4x
So we have the factor -x-2 along the top
The last thing missing is the -3 to the left of 3x. Note how -3*(-x) = 3x in the left corner and -3*(-2) = 6 in the lower right corner.
We have the factor 2x-3 along the left side.
---------
The two factors are (2x-3) and (-x-2) which leads to the factorization (x+3)(-x+2)
The last thing to do is set each factor equal to 0 and solve for x
- 2x-3 = 0 solves to x = 3/2 = 1.5
- -x-2 = 0 solves to x = -2
The two roots are x = 3/2 and x = -2
I hope this helps you
m=5
(5^2-5.5+9)^2
(25-25+9)^2
9^2
81
Answer:
So then the minimum sample to ensure the condition given is n= 38
Step-by-step explanation:
Notation
represent the sample mean for the sample
population mean (variable of interest)
represent the population standard deviation
n represent the sample size
ME = 4 the margin of error desired
Solution to the problem
When we create a confidence interval for the mean the margin of error is given by this formula:
(a)
And on this case we have that ME =4 and we are interested in order to find the value of n, if we solve n from equation (a) we got:
(b)
The critical value for 96% of confidence interval now can be founded using the normal distribution. The significance is
. And in excel we can use this formula to find it:"=-NORM.INV(0.02;0;1)", and we got
, replacing into formula (b) we got:
So then the minimum sample to ensure the condition given is n= 38