(2x^2+3x+4)(x^3+4x^2+3x)(x+4)
First use the distributive property for the first two:
(2x^5+8x^4+6x^3+3x^4+12x^3+9^2+4x^3+16x^2+12x)(x+4)
And then combine like terms:
(2x^5+11x^4+22x^3+25x^2+12x)(x+4)
Continue use the distributive property:
(2x^6+11x^5+22x^4+25x^3+12x^2+8x^5+44x^4+88x^3+100x^2+48x)
Continue combine like terms:
(2x^6+19x^5+66x^4+113x^3+112x^2+48x)
And that is your final answer.
Hope that help:)
![\bf sin(x)[csc(x)-sin(x)]~~=~~cos^2(x) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(x)\left[\cfrac{1}{sin(x)}-\cfrac{sin(x)}{1} \right]\implies \underline{sin(x)}\left[\cfrac{1-sin^2(x)}{\underline{sin(x)}} \right] \\\\\\ 1-sin^2(x)\implies cos^2(x)](https://tex.z-dn.net/?f=%5Cbf%20sin%28x%29%5Bcsc%28x%29-sin%28x%29%5D~~%3D~~cos%5E2%28x%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20sin%28x%29%5Cleft%5B%5Ccfrac%7B1%7D%7Bsin%28x%29%7D-%5Ccfrac%7Bsin%28x%29%7D%7B1%7D%20%5Cright%5D%5Cimplies%20%5Cunderline%7Bsin%28x%29%7D%5Cleft%5B%5Ccfrac%7B1-sin%5E2%28x%29%7D%7B%5Cunderline%7Bsin%28x%29%7D%7D%20%5Cright%5D%20%5C%5C%5C%5C%5C%5C%201-sin%5E2%28x%29%5Cimplies%20cos%5E2%28x%29)
recall again, sin²(θ) + cos²(θ) = 1.
<span>y-intercept when x = 0
so if x = 0, y = -3
answer
</span><span>y-intercept (0, -3)</span>
Answer:

Step-by-step explanation:
Step 1:
Write the expression

Step 2: Expand 

Step 3: Collect similar terms

Step 4: Factor 4 out of the expression to prove that the expression is a multiple of 4.

Answer:
6=p
Step-by-step explanation:
We want to isolate p, so we can first multiply by p on both sides.
24/p=4
24=4p
Then, divide by 4.
6=p