We compute for the side lengths using the distance formula √[(x₂-x₁)²+(y₂-y₁)²].
AB = √[(-7--5)²+(4-7)²] = √13
A'B' = √[(-9--7)²+(0-3)²] = √13
BC = √[(-5--3)²+(7-4)²] = √13
B'C' = √[(-7--5)²+(3-0)²] =√13
CD = √[(-3--5)²+(4-1)²] = √13
C'D' = √[(-5--7)²+(0--3)²] = √13
DA = √[(-5--7)²+(1-4)²] = √13
D'A' = √[(-7--9)²+(-3-0)²] = √13
The two polygons are squares with the same side lengths.
But this is not enough information to support the argument that the two figures are congruent. In order for the two to be congruent, they must satisfy all conditions:
1. They have the same number of sides.
2. All the corresponding sides have equal length.
3. All the corresponding interior angles have the same measurements.
The third condition was not proven.
Answer:
sum of two even numbers will always be even. conjecture just means to make a generalization based on patterns
The answer to this would be Point H because, you have to look in between points FB, which gives you the choices of G, H, L, the most logical answer for this would be point H because its in the middle of points FB. Hope my answer helps