1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Temka [501]
3 years ago
13

Find the distance between the two points. Round your solution to 2 decimal points.

Mathematics
1 answer:
VashaNatasha [74]3 years ago
6 0
Notice the grid, the points are (-5, -2) and (4, -1), thus

\bf ~~~~~~~~~~~~\textit{distance between 2 points}\\ \quad \\
\begin{array}{ccccccccc}
&&x_1&&y_1&&x_2&&y_2\\
%  (a,b)
&&(~{{ 4}} &,&{{ -1}}~) 
%  (c,d)
&&(~{{ -5}} &,&{{ -2}}~)
\end{array}~~
%  distance value
d = \sqrt{({{ x_2}}-{{ x_1}})^2 + ({{ y_2}}-{{ y_1}})^2}
\\\\\\
d=\sqrt{[-5-4]^2+[-2-(-1)]^2}\implies d=\sqrt{(-5-4)^2+(-2+1)^2}
\\\\\\
d=\sqrt{(-9)^2+(-1)^2}\implies d=\sqrt{81+1}\implies d=\sqrt{82}
You might be interested in
4.
Schach [20]

The data given on the table about the ten participants in the health study shows that B. The post-run mean and median are the same value.

<h3>What is the post run mean?</h3>

This can be found as:

= (87 + 95 + 96 + 101 + 110 + 104 + 100 + 101 + 90 + 96) / 10

= 98

<h3>What is the post run median?</h3>

First order the pulses from smallest to largest:

= 87, 90, 95, 96, 96, 100, 101, 101, 104, 110

The two digits in the middle are:

96 and 100

The median will be:

= (96 + 100) / 10

= 98

In conclusion, option B is correct.

Find out more on the median at brainly.com/question/396397.

8 0
2 years ago
Lim x--&gt; 0 (e^x(sinx)(tax))/x^2
Tom [10]

Make use of the known limit,

\displaystyle\lim_{x\to0}\frac{\sin x}x=1

We have

\displaystyle\lim_{x\to0}\frac{e^x\sin x\tan x}{x^2}=\left(\lim_{x\to0}\frac{e^x}{\cos x}\right)\left(\lim_{x\to0}\frac{\sin^2x}{x^2}\right)

since \tan x=\dfrac{\sin x}{\cos x}, and the limit of a product is the same as the product of limits.

\dfrac{e^x}{\cos x} is continuous at x=0, and \dfrac{e^0}{\cos 0}=1. The remaining limit is also 1, since

\displaystyle\lim_{x\to0}\frac{\sin^2x}{x^2}=\left(\lim_{x\to0}\frac{\sin x}x\right)^2=1^2=1

so the overall limit is 1.

4 0
3 years ago
First question, thanks. I believe there should be 3 answers
zysi [14]

Given: The following functions

A)cos^2\theta=sin^2\theta-1B)sin\theta=\frac{1}{csc\theta}\begin{gathered} C)sec\theta=\frac{1}{cot\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function

\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B

\begin{gathered} sin\theta=\frac{1}{csc\theta} \\ Note\text{ that} \\ csc\theta=\frac{1}{sin\theta} \\ sin\theta\times csc\theta=1 \\ sin\theta=\frac{1}{csc\theta} \\ Therefore \\ sin\theta=\frac{1}{csc\theta},is\text{ an identities} \end{gathered}

C

\begin{gathered} sec\theta=\frac{1}{cot\theta} \\ note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ tan\theta cot\theta=1 \\ tan\theta=\frac{1}{cot\theta} \\ Therefore, \\ sec\theta\ne\frac{1}{cot\theta},NOT\text{ IDENTITY} \end{gathered}

D

\begin{gathered} cot\theta=\frac{cos\theta}{sin\theta} \\ Note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ cot\theta=1\div tan\theta \\ tan\theta=\frac{sin\theta}{cos\theta} \\ So, \\ cot\theta=1\div\frac{sin\theta}{cos\theta} \\ cot\theta=1\times\frac{cos\theta}{sin\theta} \\ cot\theta=\frac{cos\theta}{sin\theta} \\ Therefore \\ cot\theta=\frac{cos\theta}{sin\theta},is\text{ an Identity} \end{gathered}

E

\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=\frac{1}{sin^2\theta} \\ cot^2\theta=\frac{cos^2\theta}{sin^2\theta} \\ So, \\ \frac{1}{sin^2\theta}-\frac{cos^2\theta}{sin^2\theta} \\ \frac{1-cos^2\theta}{sin^2\theta} \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ \frac{1-cos^2\theta}{sin^2\theta}=\frac{sin^2\theta}{sin^2\theta}=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities

\begin{gathered} B)sin\theta=\frac{1}{csc\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

3 0
2 years ago
Click to see the question
Vikki [24]

A and C is the answer

hope you'll learn from your teacher how?

6 0
3 years ago
Read 2 more answers
D.similar SSS similarity triangle TLM.<br> Geometry math question no Guessing
Readme [11.4K]
D. Similar SSS similarity triangle TLM
3 0
3 years ago
Read 2 more answers
Other questions:
  • Can you help me explain the process because I don't understand. (With the answer)
    12·1 answer
  • dona ate7/12. box of popcorn. Jack ate 4\10 box of popcorn the boxes of popcorn are the same size.write to explain how to use a
    7·1 answer
  • I need help plz ASAP
    14·1 answer
  • Which pair of statements about the lengths of two sides of the triangle is true?
    14·2 answers
  • How to find the equivalent to 2/5​
    9·2 answers
  • You were assigned 225 pages to read. You finished ¼ of them. How many pages do you have left to read?
    15·2 answers
  • Hi i need help with this quiz its not timed but i need it in before tomorrows class here a screen shot please helppppppp
    9·1 answer
  • What is the area of this composite figure?
    13·2 answers
  • If 8 more than twice a number is equal to 20, what is 6times the number ?
    14·1 answer
  • What is the difference of the two expressions shown below (3/4X+2)-(1/4x+5). Explain why
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!