I believe the decimial point divides between the dollar value and the cent value in american currecy. aka the decimial point symbolizes the cent value.
I assume the sentences:
"23 employees speak German; 29 speak French; 33 speak Spanish"
mean these speak ONLY the respective languages other than English.
Then the calculations boil down to those who speak ONLY two languages, noting that 8 speak French, German and Spanish, which need to be subtracted from
1. French and Spanish: 43-8=35 (speak only two foreign languages)
2. German and French: 38-8=30 (speak only two foreign languages)
3. German and Spanish: 48-8=40 (speak only two foreign languages).
Now We add up the total number of employees:
zero foreign language = 7
one foreign language = 23+29+33=85
two foreign languages = 30+35+40=105
three foreign languages=8
Total =7+85+105+8=205
(a) Percentage of employees who speak at least one foreign lanugage = (85+105+8)/205=198/205=.966=96.6%
(b) Percentage of employees who speak at least two foreign lanugages = (105+8)/205=113/205=.551=55.1%
Answer:
<em>It's 1209.6</em>
Step-by-step explanation:
Answer:
a. P(x=0)=0.2967
b. P(x=1)=0.4444
c. P(x=2)=0.2219
d. P(x=3)=0.0369
Step-by-step explanation:
The variable X: "number of meals that exceed $50" can be modeled as a binomial random variable, with n=3 (the total number of meals) and p=0.333 (the probability that the chosen restaurant charges mor thena $50).
The probabilty p can be calculated dividing the amount of restaurants that are expected to charge more than $50 (5 restaurants) by the total amount of restaurants from where we can pick (15 restaurants):

Then, we can model the probability that k meals cost more than $50 as:

a. We have to calculate P(x=0)

b. We have to calculate P(x=1)

c. We have to calcualte P(x=2)

d. We have to calculate P(x=3)

Answer:
$1.25
Step-by-step explanation: