Answer:
The microorganisms present metabolic wastes that serve as the primary source of food for other living things.
Bacteria that live free in the soil or in symbiosis with plants are essential to fix nitrogen, both nitrates and ammonia. These bacteria take nitrogen directly from the air, originating compounds that can be incorporated into the composition of the soil or living beings.
This property is restricted only to prokaryotes and is widely distributed among different groups of bacteria and some archaeobacteria. It is a process that consumes a lot of energy that occurs with the mediation of the enzyme nitrogenase, which the rest of the living organisms that cannot do or comply with this process is because they lack said enzyme.
Dunaliella is a genus of microscopic algae of the Chlorophyceae class and of the order Volvocales. All are unicellular, although with very varied morphologies.
Morphologically, its main characteristic is that they lack a rigid polysaccharide cell wall.
The ecology of this genus of green algae is characterized by its high tolerance to salinity, with eukaryotic organisms having greater tolerance to salt. They are euryhaline, adapted to salt concentrations from 50 mM NaCl to almost 5.5 M NaCl.
Explanation:
By nitrogen fixation is meant the combination of molecular nitrogen or dinitrogen with oxygen or hydrogen to give oxides or ammonia that can be incorporated into the biosphere. Molecular nitrogen, which is the majority component of the atmosphere, is inert and not directly usable by most living things. Nitrogen fixation can occur abiotic (without the intervention of living beings) or by the action of microorganisms (biological nitrogen fixation). Fixation in general involves the incorporation into the biosphere of a significant amount of nitrogen, which globally can reach about 250 million tons per year, of which 150 correspond to biological fixation.
I enjoyed learning about punnet square in school.
Answer:
B. natality + immigration = mortality + emigration
Explanation:
Migration refers to the movement of a group of people from one geographical region (location) to another geographical destination in search of better living conditions, work or social amenities.
Migration selectivity can be defined as the likelihood or tendency that a subset (part) of a group of people are going to move (migrate) out of a particular geographical location or area.
Some of the factors that influence migration selectivity are income level, age, education, gender etc.
Population change equation states that the change in the size of a population over a specific period of time is equal to the sum of the number of births and the number of immigrants that joined.
Mathematically, the population change equation is given by the formula;
Population Change = (Natality - Mortality) + (Immigration - Emigration)
Therefore, the equation which would create a stable population is given by the formula;
Natality + immigration = mortality + emigration.
I believe it’s TRANSLATION, sorry if I’m wrong :) but it shouldn’t be wrong if your talking about DNA amino acids
Answer:
- The lac operon can be activated by the binding of allolactose to the repressor protein, releasing it from DNA and thereby allowing for transcription to occur.
- In response to low glucose levels, cAMP is upregulated; the binding of cAMP to the cAMP receptor protein triggers the activation of the operon.
Explanation:
Lactose operon or lac operon (includes lacZ, lacY and lacA genes) is found in some bacteria and the products of its genes are involved in lactose metabolism. So, this operon is active (genes are transcribed) when lactose is present and glucose is absent (or at low level). The operon is regulated by the lac repressor which acts as a lactose sensor and catabolite activator protein (CAP) which acts as a glucose sensor.
When there is lactose (in the form of allolactose) lac repressor detects it and stops being repressor. This enables transcription.
CAP detects glucose (via cAMP) and activates transcription when glucose levels are low.