0.67, because when you have a percent like that you just need to move the decimal 2 places to the left.
Answer:
A college student took 4 courses last semester. His final grades, along with the credits each class is worth, are as follow: A (3), B (4), C (2), and D (3). The grading system assigns quality points as follows: A: 4; B: 3; C: 2; D: 1; and F: 0. Find the student’s GPA for this semester. Round your answer to the nearest thousandth.
another way is
This is a weighted average question. You are going to "weight" each course by the number of credits it is worth and then divide by the total number of credits. In other words, you are going to multiply each grade (A=4, B=3) by the number of credits attached to that grade. This will ensure that the courses that have more credits count more in the overall average. Then you are going to divide by the total number of credits to get the overall GPA.
So,
(3*4 + 4*3 + 2 *2 + 3*1)/(3+4+2+3) = GPA
Step-by-step explanation:
bran-list please
Answer:
13
Step-by-step explanation:
y=mx+b
b= y-intercept
Answer:
Probability that a sample mean is 12 or larger for a sample from the horse population is 0.0262.
Step-by-step explanation:
We are given that a veterinary researcher takes a random sample of 60 horses presenting with colic. The average age of the random sample of horses with colic is 12 years. The average age of all horses seen at the veterinary clinic was determined to be 10 years. The researcher also determined that the standard deviation of all horses coming to the veterinary clinic is 8 years.
So, firstly according to Central limit theorem the z score probability distribution for sample means is given by;
Z =
~ N(0,1)
where,
= average age of the random sample of horses with colic = 12 yrs
= average age of all horses seen at the veterinary clinic = 10 yrs
= standard deviation of all horses coming to the veterinary clinic = 8 yrs
n = sample of horses = 60
So, probability that a sample mean is 12 or larger for a sample from the horse population is given by = P(
12)
P(
12) = P(
) = P(Z
1.94) = 1 - P(Z < 1.94)
= 1 - 0.97381 = 0.0262
Therefore, probability that a sample mean is 12 or larger for a sample from the horse population is 0.0262.
Answer:
Step-by-step explanation:
7x - 9 = x + 3
6x - 9 = 3
6x = 12
x = 2
7(2) - 9 + 2 + 3
14 - 9 + 5
5 + 5 = 10