Answer:
D -- ATP synthesis when the phosphate donor is a substrate with high phosphoryl transfer potential
Explanation:
Substrate- level phosphorylation is the synthesis of ATP from ADP by the transfer of phosphoryl group from a substrate with high phosphoryl group potential to the ADP molecule.
In substrate-level phosphorylation, the donor is a phosphorylated intermediate molecule with a high phosphate transfer potential and it is a way through which phosphate in introduced into a molecule, the other two ways are oxidative phosphorylation and photophosphorylation. In substrate-level phosphorylation, a PO4^2- is transferred from a phosphate intermediate (substrate) to ADP to form ATP. Phosphorylase and kinases are enzymes involved in this reaction. An example is the reaction in glycolysis which involves phosphoenolpyruvate and ADP to form Pyruvate and ATP. This is to ensure adequate supply of energy to cells and also during anoxia so as not to make mitochodria strain the glycolytic ATP reserves.
Robert trivers <span>created three additional theories for evolutionary studies that included parental investment, parent-offspring conflict, and reciprocal altruism.</span>
Explanation:
Rock fragments squeeze together
Greenhouse gases arise naturally, and are part of the make-up of our atmosphere. Earths conditions are just right to allow life, including us, to flourish. Part of what makes Earth so amenable is the naturally-arising greenhouse effect, which keeps the planet at a friendly 15 °C (59 °F) on average. But in the last century or so, humans have been interfering with the energy balance of the planet, mainly through the burning of fossil fuels that give off additional carbon dioxide into the air. The level of carbon dioxide in Earth’s atmosphere has been rising consistently for decades and traps extra heat near the surface of the Earth, causing temperatures to rise.