Answer:
its 16
Step-by-step explanation:
because if you take off the parenthathesis you get -2-8 then you multiply it and since they are both negative you get a positive, so that means you get positive 16
let's notice something, angles α and β are both in the I Quadrant, and on the first quadrant the x-coordinate/cosine and y-coordinate/sine are both positive.
![\bf \textit{Sum and Difference Identities} \\\\ cos(\alpha - \beta)= cos(\alpha)cos(\beta) + sin(\alpha)sin(\beta) \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ sin(\alpha)=\cfrac{\stackrel{opposite}{15}}{\stackrel{hypotenuse}{17}}\impliedby \textit{let's find the \underline{adjacent side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-b^2}=a \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7BSum%20and%20Difference%20Identities%7D%20%5C%5C%5C%5C%20cos%28%5Calpha%20-%20%5Cbeta%29%3D%20cos%28%5Calpha%29cos%28%5Cbeta%29%20%2B%20sin%28%5Calpha%29sin%28%5Cbeta%29%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20sin%28%5Calpha%29%3D%5Ccfrac%7B%5Cstackrel%7Bopposite%7D%7B15%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B17%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Badjacent%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-b%5E2%7D%3Da%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D)
![\bf \pm\sqrt{17^2-15^2}=a\implies \pm\sqrt{64}=a\implies \pm 8 = a\implies \stackrel{I~Quadrant}{\boxed{+8=a}} \\\\[-0.35em] ~\dotfill\\\\ cos(\beta)=\cfrac{\stackrel{adjacent}{3}}{\stackrel{hypotenuse}{5}}\impliedby \textit{let's find the \underline{opposite side}} \\\\\\ \textit{using the pythagorean theorem} \\\\ c^2=a^2+b^2\implies \pm\sqrt{c^2-a^2}=b \qquad \begin{cases} c=hypotenuse\\ a=adjacent\\ b=opposite\\ \end{cases}](https://tex.z-dn.net/?f=%5Cbf%20%5Cpm%5Csqrt%7B17%5E2-15%5E2%7D%3Da%5Cimplies%20%5Cpm%5Csqrt%7B64%7D%3Da%5Cimplies%20%5Cpm%208%20%3D%20a%5Cimplies%20%5Cstackrel%7BI~Quadrant%7D%7B%5Cboxed%7B%2B8%3Da%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20cos%28%5Cbeta%29%3D%5Ccfrac%7B%5Cstackrel%7Badjacent%7D%7B3%7D%7D%7B%5Cstackrel%7Bhypotenuse%7D%7B5%7D%7D%5Cimpliedby%20%5Ctextit%7Blet%27s%20find%20the%20%5Cunderline%7Bopposite%20side%7D%7D%20%5C%5C%5C%5C%5C%5C%20%5Ctextit%7Busing%20the%20pythagorean%20theorem%7D%20%5C%5C%5C%5C%20c%5E2%3Da%5E2%2Bb%5E2%5Cimplies%20%5Cpm%5Csqrt%7Bc%5E2-a%5E2%7D%3Db%20%5Cqquad%20%5Cbegin%7Bcases%7D%20c%3Dhypotenuse%5C%5C%20a%3Dadjacent%5C%5C%20b%3Dopposite%5C%5C%20%5Cend%7Bcases%7D)
![\bf \pm\sqrt{5^2-3^2}=b\implies \pm\sqrt{16}=b\implies \pm 4=b\implies \stackrel{\textit{I~Quadrant}}{\boxed{+4=b}} \\\\[-0.35em] ~\dotfill](https://tex.z-dn.net/?f=%5Cbf%20%5Cpm%5Csqrt%7B5%5E2-3%5E2%7D%3Db%5Cimplies%20%5Cpm%5Csqrt%7B16%7D%3Db%5Cimplies%20%5Cpm%204%3Db%5Cimplies%20%5Cstackrel%7B%5Ctextit%7BI~Quadrant%7D%7D%7B%5Cboxed%7B%2B4%3Db%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill)
![\bf cos(\alpha - \beta)=\stackrel{cos(\alpha)}{\left( \cfrac{8}{17} \right)}\stackrel{cos(\beta)}{\left( \cfrac{3}{5} \right)}+\stackrel{sin(\alpha)}{\left( \cfrac{15}{17} \right)}\stackrel{sin(\beta)}{\left( \cfrac{4}{5} \right)}\implies cos(\alpha - \beta)=\cfrac{24}{85}+\cfrac{60}{85} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ ~\hfill cos(\alpha - \beta)=\cfrac{84}{85}~\hfill](https://tex.z-dn.net/?f=%5Cbf%20cos%28%5Calpha%20-%20%5Cbeta%29%3D%5Cstackrel%7Bcos%28%5Calpha%29%7D%7B%5Cleft%28%20%5Ccfrac%7B8%7D%7B17%7D%20%5Cright%29%7D%5Cstackrel%7Bcos%28%5Cbeta%29%7D%7B%5Cleft%28%20%5Ccfrac%7B3%7D%7B5%7D%20%5Cright%29%7D%2B%5Cstackrel%7Bsin%28%5Calpha%29%7D%7B%5Cleft%28%20%5Ccfrac%7B15%7D%7B17%7D%20%5Cright%29%7D%5Cstackrel%7Bsin%28%5Cbeta%29%7D%7B%5Cleft%28%20%5Ccfrac%7B4%7D%7B5%7D%20%5Cright%29%7D%5Cimplies%20cos%28%5Calpha%20-%20%5Cbeta%29%3D%5Ccfrac%7B24%7D%7B85%7D%2B%5Ccfrac%7B60%7D%7B85%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20~%5Chfill%20cos%28%5Calpha%20-%20%5Cbeta%29%3D%5Ccfrac%7B84%7D%7B85%7D~%5Chfill)
Answer:
350m
Step-by-step explanation:
- capacity= volume/1000
- but we know that volume of cylinder is πr²h so substitute it I'm the volume space
- then substitute for π as 22/7, h as 1.4 , and also capacity as 539
- 539= ((22/7)×r²×1.4)/1000
- when you simplify you get r as 350m
Answer:
Let b = rate of the boat.
Let r = rate of the river.
The rate going downstream is b + r.
The rate going upstream is b - r.
rate x time = distance
4(b + r) = 144 ---> b + r = 36 [divide both sides by 4]
9(b - r) = 144 ---> b - r = 16 [divide both sides by 9]
Add town: 2b = 52
Divide by : b = 26 mi/hr
r = 10 mi/hr
Step-by-step explanation:
<span>"A scientist in 1947 determined that your average worker honey bee beats its wings at the rate of 208 to 277 beats per second. That adds up to 12,480 to 16,820 beats per minute." </span>