Answer:
Yes, the shapes are similar. Note, the angles are equivalent and the sides are scales of each other satisfying the requirements for similarly.
Step-by-step explanation:
For a shape to be similar there are two conditions that must be met. (1) Must have equivalent angles (2) Sides must be related by a scalar.
In the two triangles presented, the first condition is met since each triangle has three angles, 90-53-37.
To test if the sides are scalar, each side must be related to a corresponding side of the other triangle with the same scalar.
9/6 = 3/2
12/8 = 3/2
15/10 = 3/2
Alternatively:
6/9 = 2/3
8/12 = 2/3
10/15 = 2/3
Since the relationship of the sides is the scalar 3/2 (Alternatively 2/3), then we can say the triangles meet the second condition.
Given that both conditions are satisfied, then we can say these triangles are similar.
Note, this is a "special case" right triangle commonly referred to as a 3-4-5 right triangle.
Cheers.
Answer:
-6x^2+x+8
Step-by-step explanation:
Add -1 and 9 because they are the only like terms
In algebra the notation is basically just a number, for example, 10, and we take it to the 10th power, you just take the decimal at the end of the 10 and move it 10 spaces to the right, if the number is negative you will move the decimal to the left 10 spaces, the 10th power is a variable and is different with every question
<h2><em>we can write (3x^2-5y^2) as (3x-5y)^2</em></h2><h2><em>(
3
x
−
5
y
)
2 as (
3
x−
5
y
)
(
3
x−
5
y
)</em></h2><h2><em>3
x
(
3
x
−
5
y
)
−
5
y
(
3x
−5
y
)</em></h2><h2><em>3
x
(
3
x
−
5
y
)
−
5
y
(3
x
−
5
y
)</em></h2><h2><em>3
x
(
3
x
)
+
3
x
(
−
5y
)
−
5
y
(
3
x
)
−
5
y(
-5
y
)</em></h2><h2><em>9
x
2
−
15
x
y
−
15y
x
+
25
y
2
</em></h2><h2><em> Subtract 15
y
x from −
15
x
y
.</em></h2><h2><em>9
x
2
−
30
xy
+
25
y
2</em></h2><h2><em> HOPE IT HELPS(◕‿◕✿) </em></h2><h2><em> SMILE!! </em></h2>